Applied Mathematics and Mechanics (English Edition) ›› 2004, Vol. 25 ›› Issue (5): 483-487.
• 论文 • 下一篇
张璟, 周哲玮
收稿日期:
2002-12-17
修回日期:
2004-01-20
出版日期:
2004-05-18
发布日期:
2004-05-18
通讯作者:
ZHOU Zhe-wei
基金资助:
ZHANG Jing, ZHOU Zhe-wei
Received:
2002-12-17
Revised:
2004-01-20
Online:
2004-05-18
Published:
2004-05-18
Supported by:
摘要: The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J.P.Boyd’s rational Chebyshev basis.
中图分类号:
张璟;周哲玮. CHEBYSHEV APPROXIMATION OF THE SECOND KIND OF MODIFIED BESSEL FUNCTION OF ORDER ZERO[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(5): 483-487.
ZHANG Jing;ZHOU Zhe-wei. CHEBYSHEV APPROXIMATION OF THE SECOND KIND OF MODIFIED BESSEL FUNCTION OF ORDER ZERO[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(5): 483-487.
[1] Amos D E. Computation of modified Bessel functions and their ratios[J]. Math Comp, 1974,28(24):239-251. [2] Campbell J B. Bessel functions In (z) and Kn (z) of real order and complex argument[J]. Comput Phys Comm, 1981,24(1): 97-105. [3] Gautschi W, Slavik J. On the computation of modified Bessel function ratios[J]. Math Comp, 1978,32(143): 865-875. [4] Kerimov M K, Skorokhodov S L. Calculation of modified Bessel functions in the complex domain[J].U S S R Comput Math and Math Phys, 1984,24(3): 15-24. [5] Segura J, de Cordoba Fernandez P, Ratis Yu L. A code to evaluate modified Bessel functions based on the continued fraction method[J]. Comput Phys Comm, 1997,105(2/3):263-272. [6] Thompson I J, Barnett A R. Modified Bessel functions In (z) and Kn (z) of real order and complex argument,to selected accuracy[J]. Comput Phys Comm, 1987,47(4):245-257. [7] Yoshida T, Ninomiya I. Computation of Bessel functions Kn (z) with complex argument by tau method[J]. J Inform Process, 1974,14(1):32-37. [8] Luke Y L. The Special Functions and Their Approximations[M]. New York:Academic Press, 1969. [9] Boyd J P. Orthogonal rational function on a semi-infinite[J]. Journal of Computational Physics,1987,70: 63-88. |
[1] | Wei SU, Zhenyu TANG, Bijiao HE, Guobiao CAI. Stable Runge-Kutta discontinuous Galerkin solver for hypersonic rarefied gaseous flow based on 2D Boltzmann kinetic model equations[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 343-362. |
[2] | Zhendong LUO, Fei TENG. Reduced-order proper orthogonal decomposition extrapolating finite volume element format for two-dimensional hyperbolic equations[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(2): 289-310. |
[3] | Jing ZHU, Shengnan WANG, Liancun ZHENG, Xinxin ZHANG. Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 125-136. |
[4] | Jing ZHU, Liu ZHENG, Liancun ZHENG, Xinxin ZHANG. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1131-1146. |
[5] | Benwen LI, Shangshang CHEN. Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1073-1090. |
[6] | Guodong ZHANG, Xiaojing DONG, Yongzheng AN, Hong LIU. New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(7): 863-872. |
[7] | M. NAZARI;H. SHOKRI;A. A. MOHAMAD. Lattice Boltzmann simulation of natural convection in open end cavity with inclined hot wall[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(4): 523-540. |
[8] | Yirang YUAN;Aijie CHENG;Danping YANG;Changfeng LI;Yunxin LIU. Theory and application of numerical simulation method of capillary force enhanced oil production[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(3): 379-400. |
[9] | N. ZHAO;K. IRAMINA. Numerical simulation of effect of convection-diffusion on oxygen transport in microcirculation[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 179-200. |
[10] | S. MANSUR;A. ISHAK;I.POP. Flow and heat transfer of nanofluid past stretching/shrinking sheet with partial slip boundary conditions[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(11): 1401-1410. |
[11] | A. ABEDIAN;J. PARVIZIAN;A. DSTER;E. RANK. Finite cell method compared to h-version finite element method for elasto-plastic problems[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1239-1248. |
[12] | 袁益让;李长峰;孙同军;刘允欣. Characteristic fractional step finite difference method for nonlinear section coupled system[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1311-1330. |
[13] | 朱玮;舒适;成礼智. First-order optimality condition of basis pursuit denoise problem[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1345-1352. |
[14] | 刘建康;郑洲顺. Efficient high-order immersed interface methods for heat equations with interfaces[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(9): 1189-1202. |
[15] | 葛全文. High-order Lagrangian cell-centered conservative scheme on unstructured meshes[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(9): 1203-1222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||