[1] CHEN Yu-shu, XU Jian. Bifurcation in nonlinear systems with parametric excitation[J]. Doklady Mothematics, 1997,56(3):880-883. [2] Van der Pol B,Van der Mark J. Frequency demltiplication[J]. Nature, 1927,120(1):363-364. [3] Wischert W, Wunderlin W, Pelster A, et al. Delay-induced instabilities in nonlinear feedback systems[J]. Phys Rev E, 1994,49(1):203-219. [4] Tass P, Kurths J, Rosenblum M G, et al. Delay-induced transitions in visually guided movements[J].Phys Rev E, 1996,54(3): R2224-R2227. [5] Nayfeh A H, Chin C M, Pratt J. Perturbation methods in nonlinear dynamics-applications to machining dynamics[J]. J Manuf Sci Eng, 1997,119(2):485-493. [6] LIAO Xiao-feng, YU Jeu-bang. Robust stability for interval Hopfield neutral networks with time delay[J]. IEEE Trans NN, 1998,9(5): 1042-1046. [7] CAO Jin-de. Periodic oscillation and exponential stability of delayed CNNs[J]. Phys Lett A, 2000,270(3/4): 157-163. [8] Wulf V, Ford N J. Numerical Hopf bifurcation for a class delay differential equations[J]. J Comput Appl Math,2000,115(2):601-616. [9] YAO Wei-guang, YU Pei, Essex C. Delayed stochastic differential model for quiet standing[J]. Phys Rev E,2001,63(2):021902-021904. [10] Reddy D VR,SenA,JohnstonG L. Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks[J]. Physica D,2000,144(2):335-357. [11] Campbell S A, B閘air J, Ohira T, et al. Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback[J]. Chaos, 1995,5(4):640-645. [12] Campbell S A, B閘air J, Otira T, et al. Limit cycles, tori, and complex dynamics in a second-order differential equations with delayed negative feedback[J]. J Dynamic Differential Equations, 7(2):213-236. [13] B?1air J, Campbell S.A stability and bifurcations of equilibria in multiple-delayed differential equation[J]. SIAM JAppl Math, 1994,54(7): 1402-1424. [14] XU Jian,LU Qi-shao.Hopf bifurcation of time-delay linear equations[J]. Int J Bif Chaos, 1999,9(5):939-951. [15] Cuomo K M, Oppenheim A V. Circuit implementation of synchronized chaos with applications to communications[J]. Phys Rev Lett, 1993,71(1):65-68. [16] Pyragas K. Continuous control of chaos by self-controlling feedback[J]. Phys Lett A, 1992,170 (3):421-428. [17] Gregory D V, Rajarshi R. Chaotic communication using time-delayed optical systems[J]. Int J Bif Chaos, 1999,9(10): 2129-2156. [18] Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. New York: John Wiley & Sons, 1979. [19] Ott E, Grebogi C, Yorke A. Controlling chaos[J]. Phys Rev Lett,1990, 64 (5): 1196-1199. |