[1] Ye Xu. Two-grid discretion with backtracking of the stream function form of the Navier-Stokes equations[J]. Appl Math Comp, 1999,100(2/3): 131-138. [2] Layton W, Ye X. Two level discretion of the stream function form of the Navier-Stokes equations[J].Numer Funct Anal And Optimi, 1999,20(9/10):909-916. [3] Fairag F.A Two-level flnite element discretization of the stream function form of the Navier-Stokes equations[J]. Comput Math Appl, 1998,36(2): 117-127. [4] XU Jin-chao. A novel two-grid method for semilinear elliptic equations[J]. SIAM J Sci Comput,1994,15(1): 231-237. [5] XU Jin-chao. Two-grid finite element discretizations for nonlinear PDE' s[J]. SIAM J Numer Anal,1996,33(5): 1759-1777. [6] Layton W. A two-level discretization method for the Navier-Stokes equations[J]. Comput Appl Math,1993,26(2):33-38. [7] Layton W, Lenferink W. Two-level Picard and modified Picard methods for the Navier-Stokes equations[J]. Appl Math Comput, 1995,80:1-12. [8] Layton W, Tobiska L. A two-level method with backtracking for the Navier-Stokes equations[J].SIAM J Numer Anal, 1998,35(5):2035-2054. [9] REN Chun-feng, MA Yi-chen. Two-grid error estimations for the stream function form of the Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(7):773-782. [10] Verfürth R. A review of a posteriori error estimates for nonlinear problems, Lr-estimate for finite element discretization of elliptic equations[J]. Math Comp, 1998,67(224): 1335-1360. [11] Volker John. Residual a posteriori error estimates for two-level finite element methods for the NavierStokes equations[J]. Applied Numerical Mathematics,2001,37(4):503-518. [12] Angermann L. A posteriori error estimates for FEM with violated Galerkin orthogonality[J]. Numer Methods Partial Differential Equations, 2002,18(2): 241-259. [13] Clément Ph. Approximation by finite element functions using local regularization[J]. RAIRO Anal Numer, 1995,9(2):77-84. [14] Ervin V, Layton W, Maubach J. A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations[J] Numer Methods Partial Differential Equations, 1996,12 (3): 333-346. |