[1] LI Shu, FENG Tai-hua, FAN Xu-ji. Numerical solution of inverse problem in dynamic model updating[J]. Journal of Computational Structural Mechanics and Applications, 1995, 12(3): 276-280. (in Chinese) [2] LI Shu, ZHUO Jia-sou, REN Qing-wen. Inverse generalized eigenvalue problem in dynamic design of symmetric structures[J]. Chinese Journal of Computational Mechanics, 1999, 16(2): 138-142. (in Chinese) [3] LI Shu, ZHUO Jia-shou, REN Qing-wen. Parameter identification of dynamic models using a bayes approach[J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(4): 447-454. [4] Joseph K T. Inverse eigenvalue problom for structural design[J].AIAA J, 1992,30(12):2891-2896. [5] ZENG Qing-hua, ZHANG Ling-mi. The method of finite element model updating of design parameter[J]. Acta Aeronautica ET Astronautica Sinica, 1992, 13(1): A29-A35. (in Chinese) [6] Friedland S, Nocedal J, Overton M L. The formulation and analysis numerical methods for inverse eigenvalue problem[J]. SIAM J Numer Anal, 1987,24(3):634-667. [7] Allgower E, Georg K. Simplicial and continuation methods for approximating fixed points and solutions to systems of equations[J]. SIAM Review, 1980, (22):28-85. [8] Chu M T. Solving addition inverse eigenvalue problems by homotopy method[J]. IMA J Numer Anal, 1990, (9):331-342. [9] XU Shu-fang. Homotopy method for computation the inverse eigenvalue problems[J]. Numerical Mathematics a Journal of Chinese University, 1993, 15(2): 200-206. (in Chinese) [10] DAI Hua. Some development for inverse matrix eigenvalue problems[J]. Journal of Nanjing University of Aeronauics and Astronautics, 1995, 27(3): 400-413. (in Chinese) [11] ZHOU Shu-quan, DAI Hua. The Algebraic Inverse Eigenvalue Problem[M]. Zhengzhou: Henan Science and Technology Press, 1991. (in Chinese) [12] Aruch M. Optimal correction of mass and stiffness matrices using measured modes[J]. AIAA J,1982,20(11): 1623-1626. [13] Aily R L. Eigenvector derivatives with repeated eigenvalues[J]. AIAA J, 1989,27(4):486-491. |