Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (6): 825-832 .doi: https://doi.org/10.1007/s10483-008-0614-y

• Articles • 上一篇    

Brusselator模型的扩散引起不稳定性和Hopf分支

李波1,2,王明新1   

  1. 1.东南大学数学系,南京 210018
    2.徐州师范大学数学科学学院,江苏 徐州 221116
  • 收稿日期:2007-12-21 修回日期:2008-04-21 出版日期:2008-06-18 发布日期:2008-06-18
  • 通讯作者: 李波

Diffusion-driven instability and Hopf bifurcation in Brusselator system

LI Bo 1,2, WANG Ming-xin 1   

  1. 1. Department of Mathematics, Southeast University, Nanjing 210018, P. R. China;
    2. School of Mathematical Science, Xuzhou Normal University,Xuzhou 221116, Jiangsu Province, P. R. China
  • Received:2007-12-21 Revised:2008-04-21 Online:2008-06-18 Published:2008-06-18
  • Contact: LI Bo

摘要: 研究了Brusselator常微分系统和相应的偏微分系统的Hopf分支,并用规范形理论和中心流行定理讨论了当空间的维数为1时Hopf分支解的稳定性。证明了:当参数满足某些条件时,
Brusselator常微分系统的平衡解和周期解是渐进稳定的,而相应的偏微分系统的空间齐次平衡解和空间齐次周期解是不稳定的;如果适当选取参数,那么Brusselator常微分系统不出现Hopf分支,但偏微分系统出现了Hopf分支,这表明,扩散可以导致Hopf分支。

Abstract: The Hopf bifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE)
model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some
conditions, the spatial homogenous equilibrium solution and the
spatial homogenous periodic solution become unstable. Our results
show that if parameters are properly chosen, Hopf bifurcation does
not occur for the ODE system, but occurs for the PDE system.

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals