Applied Mathematics and Mechanics (English Edition) ›› 2009, Vol. 30 ›› Issue (7): 933-944.doi: https://doi.org/10.1007/s10483-009-0712-x
• Articles • 上一篇
张弘1,2 Paul Georgescu3 Juan J.Nieto4 陈兰荪5
ZHANG Hong1,2, Paul Georgescu3, Juan J.Nieto4, CHEN Lan-Sun5
摘要: In this paper, we consider a variable yield model of a single-species growth in a well-stirred tank containing fresh medium, assuming the instances of time as triggering factors in which the nutrient refilling process and the removal of microorganisms by the uptake of lethal external antibiotic are initiated. It is also assumed that the periodic nutrient refilling and the periodic antibiotic injection occur with the same periodicity, but not simultaneously. The model is then formulated in terms of autonomous differential equations subject to impulsive perturbations. It is observed that either the population of microorganisms essentially washes out, or more favorably, the system is permanent. To describe this dichotomy, some biologically significant integral conditions are introduced. Further, it is shown that in a certain critical situation, a nontrivial periodic solution
emerges via a bifurcation phenomenon. Finally, the dynamics of the model is illustrated with numerical experiments and computer simulations.
中图分类号: