|    [1] Akhtar, N., Rahman, F., and Sen, S. K. Stokes flow due to fundamental singularities before a 
plane boundary. Applied Mathematics and Mechanics (English Edition), 25(4), 799–805 (2004) 
DOI 10.1007/BF02437572 
 [2] Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics, Martinus Nijhoff Publishers, 
Dordrecht (1986) 
 [3] Collins, W. D. Note on a sphere theorem for the axisymmetric Stokes flow of a viscous fluid. 
Mathematika, 5, 118–121 (1958) 
 [4] Aderogba, K. On Stokeslets in a two-fluid space. Journal of Engineering Mathematics, 10(2), 
143–151 (1976) 
 [5] Palaniappan, D., Nigam, S. D., Amaranath, T., and Usha, R. Lamb’s solution of Stokes’s equations: 
a sphere theorem. The Quarterly Journal of Mechanics and Applied Mathematics, 45(1), 
47–56 (1992) 
 [6] Padmavathi, B. S., Amaranath, T., and Nigam, S. D. Stokes flow past a sphere with mixed 
slip-stick boundary conditions. Fluid Dynamics Research, 11, 229–234 (1993) 
 [7] Schmitz, R. and Felderhof, B. U. Creeping flow about a sphere. Physica, 92A, 423–437 (1978) 
 [8] Raja, S. G. P., Tejeswara, R. K., Padmavathi, B. S., and Amaranath, T. Two-dimensional Stokes 
flows with slip-stick boundary conditions. Mechanics Research Communications, 22(5), 491–501 
(1995) 
 [9] Palaniappan, D. and Daripa, P. Interior Stokes flows with stick-slip boundary conditions. Physica, 
297A, 37–63 (2001) 
 [10] Palaniappan, D. and Daripa, P. Exterior Stokes flows with stick-slip boundary conditions. 
Zeitschrift f ¨ur Angewandte Mathematik und Physik, 53, 281–307 (2002) 
 [11] Basset, A. B. A Treatise on Hydrodynamics, Dover Publications, New York (1961) 
 [12] Lamb, H. Hydrodynamics, Dover Publications, New York (1945) 
 [13] Batchelor, G. K. An Introduction to Fluid Dynamics, Cambridge University Press, London (1967) 
 [14] Sneddon, I. N. Elements of Partial Differential Equations, McGraw Hill, Singapore (1985) 
 [15] Stimson, M. and Jeffery, G. B. The motion of two spheres in a viscous fluid. Proceedings of the 
Royal Society, A111, 110–116 (1926) 
 [16] Collins, W. D. A note on Stokes’s stream function for the slow steady motion of viscous fluid 
before plane and spherical boundaries. Mathematika, 1, 125–130 (1954) 
 [17] Spiegel, M. R. Theory and Problems of Advanced Calculus, McGraw Hill, Singapore (1963)
  |