[1] Yang, L. W. and Mei, F. X. Mechanics Variable Mass System, Beijing Institute of TechnologyPress, Beijing (1989)
[2] Mei, F. X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems,Science Press, Beijing (1999)
[3] Zhao, Y. Y. and Mei, F. X. Symmetries and Invariants of Mechanical Systems, Science Press,Beijing (1999)
[4] Mei, F. X. Symmetries and Conserved Quantities of Constrained Mechanical Systems, BeijingInstitute of Technology Press, Beijing (2004)
[5] Luo, S. K. and Zhang, Y. F. Advances in the Study of Dynamics of Constrained Systems, SciencePress, Beijing (2008)
[6] Fu, J. L., Chen, B. Y., and Chen, L. Q. Noether symmetries of discrete nonholonomic dynamicalsystems. Physics Letters A, 373, 409-412 (2009)
[7] Wang, P., Fang, J. H., and Wang, X. M. Discussion on perturbation to weak Noether symmetryand adiabatic invariants for Lagrange systems. Chinese Physics Letters, 26, 034501 (2009)
[8] Fu, J. L., Chen, L. Q., and Chen, B. Y. Noether-type theory for discrete mechanico-electricaldynamical systems with nonregular lattices. Science China: Physics, Mechanics & Astronomy,53, 1687-1698 (2010)
[9] Xia, L. L. and Shan, L. F. Weak Noether symmetry for a nonholonomic controllable mechanicalsystem. Chinese Physics B, 19, 090302 (2010)
[10] Wang, P. Perturbation to Noether symmetry and Noether adiabatic invariants of discretemechanico-electrical systems. Chinese Physics Letters, 28, 040203 (2011)
[11] Mei, F. X. Lie symmetries and conserved quantities of Birkhoffian systems. Chinese Science Bulletin,44, 318-320 (1999)
[12] Luo, S. K. A set of Lie symmetrical conservation law for rotational relativistic Hamiltonian systems.Communication in Theoretical Physics, 40, 265-268 (2003)
[13] Fu, J. L. and Chen, B. Y. Hojman conserved quantities and Lie symmetries of non-conservativesystems. Modern Physics Letters B, 23, 1315-1322 (2009)
[14] Zhou, S., Fu, H., and Fu, J. L. Symmetry theories of Hamiltonian systems with fractional derivatives.Science China: Physics, Mechanics & Astronomy, 54, 1847-1853 (2011)
[15] Jiang, W. A., Li, L., Li, Z. J., and Luo, S. K. Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems. Nonlinear Dynamics,67, 1075-1081 (2012)
[16] Mei, F. X. Form invariance of Lagrange system. Journal of Beijing Institute of Technology, 9,120-124 (2000)
[17] Li, H. and Fang, J. H. Lie symmetry and Mei symmetry of a rotational relativistic system in phasespace. Chinese Physics, 13, 1187-1190 (2004)
[18] Jia, L. Q., Zheng, S. W., and Zhang, Y. Y. Mei symmetry and Mei conserved quantity of nonholonomicsystems of non-Chetaev’s type in event space. Acta Physica Sinica, 56, 5575-5579(2007)
[19] Xia, L. L. and Zhao, X. L. Generalized Mei conserved quantity of Mei symmetry for mechanicoelectricalsystems with nonholonomic controllable constraints. Chinese Physics Letters, 26, 010203(2009)
[20] Jia, L. Q., Xie, Y. L., and Luo, S. K. Mei conserved quantity deduced from Mei symmetry ofAppell equation in a dynamical system of relative motion. Acta Physica Sinica, 60, 040201 (2011)
[21] Xu, X. J., Qin, M. C., and Mei, F. X. Unified symmetry of holonomic mechanical systems. ChinesePhysics, 14, 1287-1289 (2005)
[22] Wu, H. B. and Mei, F. X. Symmetry of Lagrangians of holonomic systems in terms of quasicoordinates.Chinese Physics B, 18, 3145-3149 (2009)
[23] Jiang, W. A. and Luo, S. K. A new type of non-Noether exact invariants and adiabatic invariantsof generalized Hamiltonian systems. Nonlinear Dynamics, 67, 475-482 (2012)
[24] Xia, L. L., Li, Y. C., Hou, Q. B., and Wang, J. Unified symmetry of nonholonomic mechanicalsystems with variable mass. Chinese Physics, 15, 903-906 (2004)
[25] Cui, J. C., Zhang, Y. Y., Yang, X. F., and Jia, L. Q. Mei symmetry and Mei conserved quantityof Appell equations for avariable mass holonomic system. Chinese Physics B, 19, 030304 (2010)
[26] Zhang, M. L., Sun, X. T., Wang, X. X., Xie, Y. L., and Jia, L. Q. Lie symmetry and the generalizedHojman conserved quantity of Nielsen equations for a variable mass holonomic system of relativemotion. Chinese Physics B, 20, 110202 (2011)
[27] Wu, H. B. and Mei, F. X. Symmetry of Lagrangians of holonomic variable mass system. ChinesePhysics B, 21, 064501 (2012)
[28] Galiullin, A. S., Gafarov, G. G., Malaishka, R. P., and Khwan, A. M. Analytical Dynamics ofHelmholtz, Birkhoff and Nambu Systems, RZUFN, Moscow (1997)
[29] Cai, J. L. and Mei, F. X. Conformal invariance and conserved quantity of Lagrange systems underLie point transformation. Acta Physica Sinica, 57, 5369-5373 (2008)
[30] Cai, J. L. Conformal invariance and conserved quantities of general holonomic systems. ChinesePhysics Letters, 25, 1523-1526 (2008)
[31] Cai, J. L., Luo, S. K., and Mei, F. X. Conformal invariance and conserved quantity of Hamiltonsystems. Chinese Physics B, 17, 3170-3174 (2008)
[32] Cai, J. L. Conformal invariance and conserved quantities of Mei symmetry for Lagrange systems.Acta Physica Polonica A, 115, 854-856 (2009)
[33] Cai, J. L. Conformal invariance and conserved quantities of Mei symmetry for general holonomicsystems. Acta Physica Sinica, 58, 22-27 (2009)
[34] Cai, J. L. Conformal invariance and conserved quantity for the nonholonomic system of Chetaev’stype. International Journal of Theoretical Physics, 49, 201-211 (2010)
[35] He, G. and Mei, F. X. Conformal invariance and integration of first-order differential equations.Chinese Physics B, 17, 2764-2766 (2008)
[36] Luo, Y. P. Generalized conformal symmetries and its application of Hamilton systems. InternationalJournal of Theoretical Physics, 48, 2665-2671 (2009)
[37] Luo, Y. P. and Fu, J. L. Conformal invariance and Hojman conserved quantities for holonomicsystems with quasi-coordinates. Chinese Physics B, 19, 090303 (2010)
[38] Zhang, Y. Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanicalsystems in event space. Chinese Physics B, 18, 4636-4642 (2009)
[39] Zhang, M. J., Fang, J. H., and Lu, K. Conformal invariance and conserved quantity of third-orderLagrange equations for non-conserved mechanical systems. Chinese Physics B, 18, 4650-4656(2009)
[40] Huang, W. L. and Cai, J. L. Conformal invariance and conserved quantity of Mei symmetry forhigher-order nonholonomic system. Acta Mechanica, 223(2), 433-440 (2012)
[41] Cai, J. L. Conformal invariance of Mei symmetry for the holonomic system with variable mass.Chinese Journal of Physics, 48, 728-735 (2010) |