[1] Zhang, R., Zhang, C., and Jiang, J. A new approach to direct solution of 2D heat transfer problemwith nonlinear source-terms in frequency domain. International Journal of Nonlinear Sciences andNumerical Simulation, 7(3), 295-298 (2006)
[2] Ainsworth, M. and Tinsley-Oden, J. A Posteriori Error Estimation in Finite Element Analysis,Wiley-InterScience, New York, 1-240 (2000)
[3] Tinsley-Oden, J. and Prudhomme, S. Estimation of modeling error in computational mechanics.Journal of Computational Physics, 182, 496-515 (2002)
[4] Tinsley-Oden, J., Prudhomme, S., and Bauman, P. On the extension of goal-oriented error estimationand hierarchical modeling to discrete lattice models. Comput. Methods Appl. Mech. Engrg.,194, 3668-3688 (2005)
[5] Fuentes, D., Littlefield, D., Tinsley-Oden, J., and Prudhomme, S. Extensions of goal-orientederror estimation methods to simulations of highly-nonlinear response of shock-loaded elastomerreinforcedstructures. Comput. Methods Appl. Mech. Engrg., 195, 4659-4680 (2006)
[6] Prudhomme, S. and Tinsley-Oden, J. On goal-oriented error estimation for elliptic problems:application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg., 176, 313-331 (1999)
[7] Tinsley-Oden, J. and Prudhomme, S. Goal-oriented error estimation and adaptivity for the finiteelement method. Computers and Mathematics with Applications, 41, 735-756 (2001)
[8] Ladeveze, P., Rougeota, P., Blanchardb, P., and Moreaub, J. P. Local error estimators for finiteelement linear analysis. Comput. Methods Appl. Mech. Engrg., 176, 231-246 (1999)
[9] Chamoina, L. and Ladev`eze, P. Strict and practical bounds through a non-intrusive and goalorientederror estimation method for linear viscoelasticity problems. Finite Elements in Analysisand Design, 45, 251-262 (2009)
[10] Panetier, J., Ladeveze, P., and Chamoin, L. Strict and effective bounds in goal-oriented errorestimation applied to fracture mechanics problems solved with XFEM. Int. J. Numer. Meth.Engng., 81, 671-700 (2010)
[11] Gratsch, T. and Bathe, K. J. A posteriori error estimation techniques in practical finite elementanalysis. Computers and Structures, 83, 235-265 (2005)
[12] Schleupen, A. and Ramm, E. Local and global error estimations in linear structural dynamics.Computers and Structures, 76, 741-756 (2000)
[13] Larsson, F., Hansbo, P., and Runesson, K. Strategies for computing goal-oriented a posteriorierror measures in non-linear elasticity. Int. J. Numer. Meth. Engng., 55, 879-894 (2002)
[14] Van der Zee, K. G. and Verhoosel, C. V. Isogeometric analysis-based goal-oriented error estimationfor free-boundary problems. Finite Elements in Analysis and Design, 47, 600-609 (2011)
[15] Van der Zee, K. G., Tinsley-Oden, J., Prudhomme, S., and Hawkins-Daarud, A. Goal-oriented errorestimation for Cahn-Hilliard models of binary phase transition. Numerical Methods for PartialDifferential Equations, 27(1), 160-196 (2011)
[16] Ni, Y. Q., Zheng, G., and Ko, J. M. Nonlinear periodically forced vibration of stay cables. Journalof Vibration and Acoustics, 126(2), 245-252 (2004)
[17] Challamel, N. On the comparison of Timoshenko and shear models in beam dynamics. Journal ofEngineering Mechanics-ASCE, 132(10), 1141-1146 (2006)
[18] Han, S. M., Benaoya, H., and Wei, T. Dynamics of transversely vibration beams using fourengineering theories. Journal of Sound and Vibration, 225(5), 935-988 (1999)
|