[1] Mahapatra, T. R. and Gupta, A. S. Magnetohydrodynamics stagnation point flow towards astretching sheet. Acta Mechanica, 152, 191-196 (2001)
[2] Nazar, R., Amin, N., Filip, D., and Pop, I. Unsteady boundary layer flow in the region of thestagnation point on a stretching sheet. International Journal of Engineering Science, 42, 1241-1253 (2004)
[3] Lok, Y. Y., Amin, N., and Pop, I. Unsteady mixed convection flow of a micropolar fluid near thestagnation point on a vertical surface. International Journal of Thermal Sciences, 45, 1149-1157(2006)
[4] Lok, Y. Y., Amin, N., and Pop, I. Mixed convection flow near a non-orthognal stagnation pointtowards a stretching vertical plate. International Journal of Heat and Mass Transfer, 50, 4855-4863 (2007)
[5] Wang, C. Y. Off-centered stagnation flow towards a rotating disc. International Journal of EngineeringScience, 46, 391-396 (2008)
[6] Xu, H., Liao, S. J., and Pop, I. Series solution of unsteady boundary layer flow of a micropolarfluid near the forward stagnation point of a plane surface. Acta Mechanica, 184, 87-101 (2006)
[7] Nadeem, S., Hussain, M., and Naz, M. MHD stagnation flow of a micropolar fluid through aporous medium. Meccanica, 45, 869-880 (2010)
[8] Kumari, M. and Nath, G. Steady mixed convection stagnation-point flow of upper convectedMaxwell fluids with magnetic field. International Journal of Non-Linear Mechanics, 44, 1048-1055 (2009)
[9] Hayat, T., Abbas, Z., and Sajid, M. MHD stagnation-point flow of an upper-convected Maxwellfluid over a stretching surface. Chaos, Solitons and Fractals, 39, 840-848 (2009)
[10] Labropulu, F., Li, D., and Pop, I. Non-orthogonal stagnation-point flow towards a stretchingsurface in a non-Newtonian fluid with heat transfer. International Journal of Thermal Sciences,49, 1042-1050 (2010)
[11] Wang, C. Y. and Miklavic, M. Viscous flow due to a shrinking sheet. Quarterly Applied Mathematics,64, 283-290 (2006)
[12] Fang, T. and Zhong, Y. Viscous flow over a shrinking sheet with an arbitrary surface velocity.Communications in Nonlinear Science and Numerical Simulation, 15, 3768-3776 (2010)
[13] Cortell, R. On a certain boundary value problem arising in shrinking sheet flows. Applied Mathematicsand Computation, 217, 4086-4093 (2010)
[14] Nadeem, S. and Awais, M. Thin film flow of an unsteady shrinking sheet through porous mediumwith variable viscosity. Physics Letters A, 372, 4965-4972 (2008)
[15] Hayat, T., Iram, S., Javed, T., and Asghar, S. Shrinking flow of second grade fluid in a rotatingframe: an analytic solution. Communications in Nonlinear Science and Numerical Simulation,15, 2932-2941 (2010)
[16] Eringen, A. C. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16, 1-18(1966)
[17] Eringen, A. C. Microcontinuum Field Theories, II: Fluent Media, Springer, New York (2001)
[18] Devakar, M. and Iyengar, T. K. V. Stokes' first problem for a micropolar fluid through state-spaceapproach. Applied Mathematical Modelling, 33, 924-936 (2009)
[19] Ali, N. and Hayat, T. Peristaltic flow of a micropolar fluid in an asymmetric channel. Computersand Mathematics with Applications, 55, 589-608 (2008)
[20] Magyari, E. and Kumaran, V. Generalized Crane flows of micropolar fluids. Communications inNonlinear Science and Numerical Simulation, 15, 3237-3240 (2010)
[21] Ariman, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics — a review.International Journal of Engineering Science, 11, 905-930 (2010)
[22] Hoyt, J. W. and Fabula, A. F. The Effect of Additives on Fluid Friction, Defense TechnicalInformation Center, Washington D. C. (1964)
[23] Power, H. Micropolar fluid model for the brain fluid dynamics. International Conference on BiofluidMechanics, New York (1998)
[24] Abbasbandy, S. Homotopy analysis method for the Kawahara equation. Nonlinear Analysis: RealWorld Applications, 11, 307-312 (2010)
[25] Liu, C. S. The essence of the homotopy analysis method. Applied Mathematics and Computation,216, 1299-1303 (2010)
[26] Liao, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman andHall/CRC Press, Boca Raton (2003)
[27] Liao, S. J. A short review on the homotopy analysis method in fluid mechanics. Journal of Hydrodynamics,22, 882-884 (2010)
[28] Hayat, T., Naz, R., and Sajid, M. On the homotopy solution for Poiseuille flow of a fourth gradefluid. Communications in Nonlinear Science and Numerical Simulation, 15, 581-589 (2010)
[29] Hayat, T., Qasim, M., and Abbas, Z. Homotopy solution for the unsteady three-dimensional MHDflow and mass transfer in a porous space. Communications in Nonlinear Science and NumericalSimulation, 15, 2375-2387 (2010)
[30] Dinarvand, S., Doosthoseini, A., Doosthoseini, E., and Rashidi, M. M. Series solutions for unsteadylaminar MHD flow near forward stagnation point of an impulsively rotating and translating spherein presence of buoyancy forces. Nonlinear Analysis: Real World Applications, 11, 1159-1169 (2010)
[31] Hayat, T. and Javed, T. On analytic solution for generalized three-dimensional MHD flow over aporous stretching sheet. Physics Letters A, 370, 243-250 (2007)
[32] Abbasbandy, S., Yurusoy, M., and Pakdemirli, M. The analysis approach of boundary layer equationsof power-law fluids of second grade. Zeitschrift für Naturforschung, 63(a), 564-570 (2008)
[33] Tan, Y. and Abbasbandy, S. Homotopy analysis method for quadratic Ricati differential equation.Communications in Nonlinear Science and Numerical Simulation, 13, 539-546 (2008)
[34] Hayat, T., Iqbal, Z., Sajid, M., and Vajravelu, K. Heat transfer in pipe flow of a Johnson-Segalmanfluid. International Communications in Heat and Mass Transfer, 35, 1297-1301 (2008)
[35] Rees, D. A. S. and Pop, I. Free convection boundary layer flow of a micropolar fluid from a verticalflat plate. IMA Journal of Applied Mathematics, 61, 179-197 (1998)
|