[1] Moudafi, A. Mixed equilibrium problems: sensitivity analysis and algorithmic aspects. Comput. Math. Appl., 44, 1099–1108 (2002)
[2] Huang, N. J., Lan, H. Y., and Cho, Y. J. Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings. J. Comput. Appl. Math., 196, 608–618 (2006)
[3] Kazmi, K. R. and Khan, F. A. Existence and iterative approximation of solutions of generalized mixed equilibrium problems. Comput. Math. Appl., 56, 1314–1321 (2008)
[4] Ding, X. P. Existence and algorithm of solutions for a system of generalized mixed implicit equi- librium problems in Banach spaces. Appl. Math. Mech. -Engl. Ed., 31(9), 1049–1062 (2010) DOI 10.1007/s10483-010-1341-z
[5] Ding, X. P. Auxiliary principle and approximation solvability for system of new generalized mixed equilibrium problems in reflexive Banach spaces. Appl. Math. Mech. -Engl. Ed., 32(2), 231–240 (2011) DOI 10.1007/s10483-011-1409-9
[6] Ding, X. P. Auxiliary principle and iterative algorithm for a new system of generalized mixed equilibrium problems in Banach spaces. Appl. Math. Comput., 218, 3507–3514 (2011)
[7] Ding, X. P. Iterative algorithm of solutions for a system of generalized mixed equilibrium problems in reflexive Banach spaces. Appl. Math. Comput., 218, 4953–4961 (2012)
[8] Ding, X. P. and Ho, J. L. New iterative algorithm for solving a system of generalized mixed implicit equilibrium problems in Banach spaces. Taiwanese J. Math., 15(2), 673–694 (2011)
[9] Antipin, A. S. Iterative gradient prediction-type methods for computing fixed-point of extremal mappings. Parametric Optimization and Related Topics IV (eds. Guddat, J., Jonden, H. T., Nizicka, F., Still, G., and Twitt, F.), Peter Lang, Frankfurt Main, 11–24 (1997)
[10] Ding, X. P. and Tan, K. K. A minimax inequality with applications to existence of equilibrium point and fixed point theorems. Colloq. Math., 63, 233–247 (1992)
[11] Ding, X. P. Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces. Acta Math. Sinica, 28(3), 503–514 (2012)
[12] Pascali, D. and Surian, S. Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, The Netherlands (1978)
[13] Ding, X. P. Generalized quasi-variational-like inclusions with nonconvex functions. Appl. Math. Comput., 122, 267–282 (2001)
[14] Ansari, Q. H. and Yao, J. C. Iterative schemes for solving mixed variational-like inequalities. J. Optim. Theory Appl., 108(3), 527–541 (2001)
[15] Ding, X. P. Iterative algorithm of solutions for generalized mixed implicit equilibrium-like prob- lems. Appl. Math. Comput., 162, 799–809 (2005)
[16] Ding, X. P., Lin, Y. C., and Yao, J. C. Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems. Appl. Math. Mech. -Engl. Ed., 27(9), 1157–1164 (2006) DOI 10.1007/s10483-006-0901-1
[17] Xia, F. Q. and Ding, X. P. Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems. Appl. Comput. Math., 188(1), 173–179 (2007)
[18] Ding, X. P. Existence and algorithm of solutions for mixed variational-like inequalities in Banach spaces. J. Optim. Theory Appl., 127(2), 285–322 (2005)
[19] Ding, X. P. and Yao, J. C. Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces. J. Comput. Math. Appl., 49(5-6), 857–869 (2005)
[20] Zhang, S. S. Generalized mixed equilibrium problem in Banach spaces. Appl. Math. Mech. -Engl. Ed., 30(9), 1105–1112 (2009) DOI 10.1007/s10483-009-0904-6
[21] Ceng, L. C. and Yao, J. C. A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math., 214, 186–201 (2008)
[22] Bigi, G., Castellani, M., and Kassay, G. A dual view of equilibrium problems. J. Math. Anal. Appl., 342(1), 17–26 (2008)
[23] Wang, Y. Q. and Zeng, L. C. Hybrid projection method for generalized mixed equilibrium problems, variational inequality problems in Banach spaces. Appl. Math. Mech. -Engl. Ed., 32(2), 251–264 (2011) DOI 10.1007/s10483-011-1411-x
[24] Ding, X. P. Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces. J. Optim. Theory Appl., 146, 347–357 (2010)
[25] Nadler, S. B. Multivalued contraction mapping. Pacific J. Math., 30, 475–488 (1969)
|