[1] Simiu, E. and Scanlan, R. H. Wind Effects on Structures:An Introduction to Wind Engineering, John Wiley and Sons, New York (1986)
[2] Anagnos, T. and Kiremidjian, A. S. A review of earthquake occurrence models for seismic hazard analysis. Probabilistic Engineering Mechanics, 3(1), 3-11(1988)
[3] Bouc, R. Forced vibration of mechanical systems with hysteresis. Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia (1967)
[4] Dahl, P. R. Solid friction damping of mechanical vibrations. AIAA Journal, 14(12), 1675-1682(1976)
[5] Wen, Y. K. Method for random vibration of hysteretic systems. ASCE Journal of the Engineering Mechanics Division, 102(2), 249-263(1976)
[6] Yar, M. and Hammond, J. K. Modeling and response of bilinear hysteretic systems. ASCE Journal of Engineering Mechanics Division, 113(7), 1000-1013(1987)
[7] Kougioumtzoglou, I. A. and Spanos, P. D. An approximate approach for nonlinear system response determination under evolutionary stochastic excitation. Current Science, 97(8), 1203-1211(2009)
[8] Mayergoyz, I. D. Mathematical Models of Hysteresis, Springer-Verlag, New York (1991)
[9] Visintin, A. Differential Models of Hysteresis, Springer-Verlag, Berlin (1994)
[10] Ying, Z. G., Zhu, W. Q., Ni, Y. Q., and Ko, J. M. Stochastic averaging of Duhem hysteretic systems. Journal of Sound and Vibration, 254(1), 91-104(2002)
[11] Bellman, R. Dynamic programming and stochastic control processes. Information and Control, 1(3), 228-239(1958)
[12] Fleming, W. H. and Soner, H. M. Controlled Markov Process and Viscosity Solutions, Springer, New York (1992)
[13] Yong, J. Y. and Zhou, X. Y. Stochastic Controls, Hamiltonian Systems and HJB Equations, Springer, New York (1999)
[14] Zhu, W. Q., Ying, Z. G., and Soong, T. T. An optimal nonlinear feedback control strategy for randomly excited structural systems. Nonlinear Dynamics, 24(1), 31-51(2001)
[15] Zhu, W. Q., Huang, Z. L., and Yang, Y. Q. Stochastic averaging of quasi-integrable Hamiltonian systems. ASME Journal of Applied Mechanics, 64(4), 975-984(1997)
[16] Zhu, W. Q. Nonlinear stochastic dynamics and control in Hamiltonian formulation. Applied Mechanics Reviews, 59, 230-248(2006)
[17] Zhu, W. Q., Huang, Z. L., and Deng, M. L. Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems. International Journal of Non-Linear Mechanics, 37(6), 1057-1071(2002)
[18] Li, X. P., Huan, R. H., and Wei, D. M. Feedback minimization of the first-passage failure of a hysteretic system under random excitations. Probabilistic Engineering Mechanics, 25(2), 245-248(2010)
[19] Lin, Y. K. and Cai, G. Q. Probabilistic Structural Dynamics:Advanced Theory and Application, McGraw-Hill, New York (1995)
[20] Lin, Y. K. and Cai, G. Q. Some thoughts on averaging techniques in stochastic dynamics. Probabilistic Engineering Mechanics, 15(1), 7-14(2000)
[21] Xu, Y., Xu, W., Mahmoud, G. M., and Lei, Y. M. Beam-beam interaction models under narrowband random excitation. Physica A, 346, 372-386(2005)
[22] Xu, Y., Zhang, H. Q., and Xu, W. On stochastic complex beam-beam interaction models with Gaussian colored noise. Physica A, 384, 259-272(2007)
[23] Tsiatas, G. and Sadid, H. Earthquake response of hysteretic mass-column using non-Gaussian closure. Soil Dynamics and Earthquake Engineering, 10(5), 256-263(1991)
[24] Jin, X. L., Huang, Z. L., and Leung, Y. T. Nonstationary probability densities of system response of strongly nonlinear single-degree-of-freedom system subject to modulated white noise excitation. Applied Mathematics and Mechanics (English Edition), 32(11), 1389-1398(2011) DOI 10.1007/s10483-011-1509-7 |