[1] Fan, E. G. Extended Tanh-function method and its applications to nonlinear equations. Physics Letters A, 277, 212-220 (2000)
[2] Bluman, G. W. and Kumei, S. Symmetries and Differential Equations, Springer-Verlag, New York (1989)
[3] Olver, P. J. Applications of Lie Groups to Differential Equations, Springer-Verlag, New York (1993)
[4] Zhang, D. J. and Chen, S. T. Symmetries for the Ablowitz-Ladik hierarchy: I. four-potential case. Studies in Applied Mathematics, 125, 393-418 (2010)
[5] Xia, T. C., Chen, X. H., and Chen, D. Y. Two types of new Lie algebras and corresponding hierarchies of evolution equations. Chaos, Solitons and Fractals, 23, 1033-1041 (2005)
[6] Xia, T. C. and Ma, C. Z. A new Lie algebra and corresponding evolution equations hierarchy. Chaos, Solitons and Fractals, 39, 136-142 (2009)
[7] Zhang, D. J. Conservation laws and Lax pair of the variable coefficient KdV equation. Chinese Physics Letters, 24, 3021-3023 (2007)
[8] Zhang, D. J., Bi, J. B., and Hao, H. H. A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics. Journal of Physics A: Mathematical and General, 39, 14627-14648 (2006)
[9] Bluman, G. and Cole, J. D. The general similarity solutions of the heat equation. Journal of Mathematics and Mechanics, 18, 1025-1042 (1969)
[10] Katayev, G. I. Electromagnetic Shock Waves, Iliffe Books Ltd., London (1966)
[11] Dodd, R. K. Solitons and Nonlinear Wave Equations, Academic Press, London (1982)
[12] Azad, H., Mustafa, M. T., and Ziad, M. Group classification, optimal system and optimal reductions of a class of Klein Gordon equations. Communications in Nonlinear Science and Numerical Simulation, 15, 1132-1147 (2010)
[13] Temuer, C. L., Eerdun, B. H., and Xia, T. C. Nonclassical symmetry of the wave equation with source term. Chinese Annals of Mathematics (Series A), 33, 193-204 (2012)
[14] Ames, W. F. and Lohner, R. J. Group properties of utt = [F(u)ux]x. International Journal of Non-Linear Mechanics, 16, 439-447 (1981)
[15] Näslund, R. On Conditional Q-Symmetries of Some Quasilinear Hyperbolic Wave Equations, Luleå Tekniska Universitet, Luleå (2003)
[16] Temuer, C. L. and Bai, Y. S. Differential characteristic set algorithm for the complete symmetry classification of partial differential equations. Applied Mathematics and Mechanics (English Edition), 30(5), 595-606 (2009) DOI 10.1007/s10483-009-0506-6
[17] Temuer, C. L. and Pang, J. An algorithm for the complete symmetry classification of differential equations based on Wu's method. Journal of Engineering Mathematics, 66, 181-199 (2010)
[18] Frenkel, J. and Kontorova, T. On the theory of plastic deformation and twinning. Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya, 1, 137-149 (1939)
[19] Pucci, E. and Salvatori, C. M. Group properties of a class of semilinear hyperbolic equations. International Journal of Non-Linear Mechanics, 21, 147-155 (1986)
[20] Tsyfra, I. M. Conditional symmetry reduction and invariant solutions of nonlinear wave equations. Proceedings of Institute of Mathematics of NAS of Ukraine, 43, 229-233 (2002) |