[1] Hu, D. L., Chan, B., and Bush, J. W. M. The hydrodynamics of water strider locomotion. nature, 424, 663-666(2003)
[2] Vella, D. Floating versus sinking. Annu. Rev. Fluid Mech., 47, 115-135(2015)
[3] Gao, P. and Feng, J. J. A numerical investigation of the propulsion of water walkers. J. Fluid Mech., 668, 363-383(2011)
[4] Fan, E. S. C. and Bussmann, M. Piecewise linear volume tracking in spherical coordinates. Appl. Math. Model., 37, 3077-3092(2013)
[5] Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys., 209, 448-476(2005)
[6] Mittal, R. and Iaccarino, G. Immersed boundary methods. Annu. Rev. Fluid Mech., 37, 239-261(2005)
[7] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A., and von Loebbecke, A. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys., 227, 4825-4852(2008)
[8] Ren, W. W., Shu, C., Wu, J., and Yang, W. M. Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications. Comput. Fluids, 57, 40-51(2012)
[9] Ding, H., Spelt, P. D. M., and Shu, C. Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys., 226, 2078-2095(2007)
[10] Liu, H. R. and Ding, H. A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates. J. Comput. Phys., 294, 484-502(2015)
[11] Wan, D. C., Patnaik, B. S. V., and Wei, G. W. Discrete singular convolutionfinite subdomain method for the solution of incompressible viscous flows. J. Comput. Phys., 180, 229-255(2002)
[12] Raspo, I. A direct spectral domain decomposition method for the computation of rotating flows in a T-shape geometry. Comput. Fluids, 32, 431-456(2003)
[13] Abide, S. and Viazzo, S. A 2D compact fourth-order projection decomposition method. J. Comput. Phys., 206, 252-276(2005)
[14] Jacqmin, D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys., 155, 96-127(1999)
[15] Biben, T., Kassner, K., and Misbah, C. Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E, 72, 041921(2005)
[16] Folch, R., Casademunt, J., Hernandez-Machado, A., and Ramirez-Piscina, L. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast I:theoretical approach. Phys. Rev. E, 60, 1724-1733(1999)
[17] Yue, P. T., Feng, J. J., Liu, C., and Shen, J. A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech., 515, 293-317(2004)
[18] Ding, H. and Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E, 75, 046708(2007)
[19] Ding, H. and Spelt, P. D. M. Inertial effects in droplet spreading:a comparison between diffuseinterface and level-set simulations. J. Fluid Mech., 576, 287-296(2007)
[20] Ding, H. and Spelt, P. D. M. Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers. J. Fluid Mech., 599, 341-362(2008)
[21] Ding, H., Gilani, M. N. H., and Spelt, P. D. M. Sliding, pinch-off and detachment of a droplet on a wall in shear flow. J. Fluid Mech., 644, 217-244(2010)
[22] Ding, H., Li, E. Q., Zhang, F. H., Sui, Y., Spelt, P. D. M., and Thoroddsen, S. T. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech., 697, 92-114(2012)
[23] Breuer, M., Bernsdorf, J., Zeiser, T., and Durst, F. Accurate computations of the laminar flow past a square cylinder based on two different methods:lattice-Boltzmann and finite-volume. Int. J. Heat and Fluid Flow, 21, 186-196(2000)
[24] Okajima, A. Strouhal numbers of rectangular cylinders. J. Fluid Mech., 123, 379-398(1982)
[25] Sumesh, P. T. and Govindarajan, R. The possible equilibrium shapes of static pendant drops. J. Chem. Phys., 133, 144707(2010)
[26] Sui, Y., Ding, H., and Spelt, P. D. M. Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech., 46, 97-119(2014)
[27] Ding, H., Chen, B. Q., Liu, H. R., Zhang, C. Y., Gao, P., and Lu, X. Y. On the contact-line pinning in cavity formation during solid-liquid impact. J. Fluid Mech., 783, 504-525(2015)
[28] Subramani, H. J., Yeoh, H. K., Suryo, R., Xu, Q., Ambravaneswaran, B., and Basaran, O. A. Simplicity and complexity in a dripping faucet. Phys. Fluids, 18, 032106(2006)
[29] Yarin, A. L. Drop impact dynamics:splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech., 38, 159-192(2006)
[30] Huang, J. J., Shu, C., and Chew, Y. T. Lattice Boltzmann study of droplet motion inside a grooved channel. Phys. Fluids, 21, 022103(2009)
[31] Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 28, 988-994(1936)
[32] Cassie, A. B. D. and Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc., 40, 546-550(1944)
[33] Barrero, A. and Loscertales, I. G. Micro- and nano-particles via capillary flows. Annu. Rev. Fluid Mech., 39, 89-106(2007)
[34] Herrada, M. A., Ganan-Calvo, A. M., Ojeda-Monge, A., Bluth, B., and Riesco-Chueca, P. Liquid flow focused by a gas:jetting, dripping, and recirculation. Phys. Rev. E, 78, 036323(2008)
[35] Vega, E. J., Montanero, J. M., Herrada, M. A., and Ganan-Calvo, A. M. Global and local instability of flow focusing:the influence of the geometry. Phys. Fluids, 22, 064105(2010)
[36] Montanero, J. M., Rebollo-Munoz, N., Herrada, M. A., and Ganan-Calvo, A. M. Global stability of the focusing effect of fluid jet flows. Phys. Rev. E, 83, 036309(2011)
[37] Gañán-Calvo, A. M. and Riesco-Chueca, P. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid:the minimum flow rate in flow focusing. J. Fluid Mech., 553, 75-84(2006) |