[1] Shaydurov, V., Liu, T., and Zheng, Z. Four-stage computational technology with adaptive numerical methods for computational aerodynamics. AIP Conference Proceedings, 1487, 42-48(2012)
[2] Xu, Z., Marie-Gabrielle, V., Julien, D., Paul, L., Dominique, P., Jean-Yves, T., Ricardo, C., Jason, L., Luis, M., and David, Z. Mesh adaptation using different error indicators for the Euler equations. 15th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Anaheim (2001) DOI 10.2514/6.2001-2549
[3] Venditti, D. A. and Darmofal, D. L. Anisotropic grid adaptation for functional outputs:application to two-dimensional viscous flows. Journal of Computational Physics, 187, 22-46(2003)
[4] Becker, R. and Rannacher, R. Feed-back approach to error control in finite element methods:basic analysis and examples. East-West Journal of Numerical Mathematics, 4, 237-264(1996)
[5] Becker, R. and Rannacher, R. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, 10, 1-102(2001)
[6] Venditti, D. A. Grid Adaptation for Functional Outputs of Compressible Flow Simulations, Ph. D. dissertation, Massachusetts Institute of Technology, Massachusetts (2002)
[7] Venditti, D. A. and Darmofal, D. L. Grid adaptation for functional outputs:application to twodimensional inviscid flows. Journal of Computational Physics, 176, 40-69(2002)
[8] Hartmann, R. and Houston, P. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics, 183, 508-532(2002)
[9] Hartmann, R. and Houston, P. Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM Journal on Scientific Computing, 24, 979-1004(2003)
[10] Hartmann, R. Error estimation and adjoint based refinement for an adjoint consistent DG discretization of the compressible Euler equations. International Journal of Computing Science and Mathematics, 1, 207-220(2007)
[11] Wang, L. and Mavriplis, D. J. Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations. Journal of Computational Physics, 228, 7643-7661(2009)
[12] Fidkowski, K. J. A Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier-Stokes Equations, Ph. D. dissertation, Massachusettes Institute of Technology, Massachusettes (2007)
[13] Fidkowski, K. J. and Darmofal, D. L. A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations. Journal of Computational Physics, 225, 1653-1672(2007)
[14] Fidkowski, K. J. and Darmofal, D. L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA Journal, 49, 673-694(2011)
[15] Hartmann, R. Adaptive Finite Element Methods for the Compressible Euler Equations, Ph. D. dissertation, University of Heidelberg, Heidelberg (2002)
[16] Fidkowski, K. J. and Roe, P. L. An entropy adjoint approach to mesh refinement. SIAM Journal on Scientific Computing, 32, 1261-1287(2010)
[17] Li, L. Y., Allaneau, Y., and Jamesony, A. Continuous adjoint approach for adaptive mesh refinement. 20th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii (2011)
[18] Houston, P. and Süli, E. hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM Journal on Scientific Computing, 23, 1226-1252(2001)
[19] Bangerth, W. Adaptive Finite Element Methods for Differential Equations Lectures in Mathematics, Birkhäuser, Basel (2003) |