[1] Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics (3rd edition), Springer, Berlin (2009)
[2] LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge (2003)
[3] Nessyahu, H. and Tadmor, E. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics, 87, 408-463(1990)
[4] Cockburn, B. and Shu, C. W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation law. Mathematics of Computation, 52, 411-435(1989)
[5] Ben-Artzi, M. and Falcovitz, J. Generalized Riemann Problems in Computational Gas Dynamics, Cambridge University Press, Cambridge (2003)
[6] Van Leer, B. Towards the ultimate conservative difference scheme V:a second-order sequel to Godunov's method. Journal of Computational Physics, 32, 101-136(1979)
[7] LeVeque, R. J. Numerical Methods for Conservation Laws, Birkhäuser, Basel (2002)
[8] Godlewski, E. and Raviart, P. A. Hyperbolic Systems of Conservation Laws, Mathematics and Applications, Ellipses, Paris (1991)
[9] Lax, P. D. and Wendroff, B. Systems of conservation laws. Communications on Pure and Applied Mathematics, 13, 217-237(1960)
[10] Cauchy, A. Mèmoire surl'emploi du calcul des limites dans l'intègration des èquations aux dèrivèes partielles. Comptes Rendus, 1, 17-58(1842)
[11] Capdeville, G. Towards a compact high-order method for nonlinear hyperbolic systems Ⅱ:the Hermite-HLLC scheme. Journal of Computational Physics, 227, 9428-9462(2008)
[12] Yang, H. On wavewise entropy inequalities for high-resolution schemes I:the semidiscrete case. Mathematics of Computation, 65, 45-67(1996)
[13] Yang, H. On wavewise entropy inequality for high-resolution schemes Ⅱ:fully discrete MUSCL schemes with exact evolution in small time. SIAM Journal on Numerical Analysis, 36, 1-31(1998)
[14] Jiang, G. and Shu, C. On a cell entropy inequality for discontinuous Galerkin methods. Mathematics of Computation, 62, 531-538(1994)
[15] Kurganov, A. and Tadmor, E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. Journal of Computational Physics, 160, 241-282(2000)
[16] Li, H., Wang, Z., and Mao, D. K. Numerical neither dissipative nor compressive scheme for linear advection equation and its application to the Euler system. Journal of Scientific Computing, 36, 285-331(2008)
[17] Smoller, J. Shock Waves and Reaction-Diffusion Equations (2rd edition), Springer-Verlag, New York (1994)
[18] Ben-Artzi, M., Falcovitz, J., and Li, J. The convergence of the GRP schemes. Discrete and Continuous Dynamical Systems, 23, 1-27(2009)
[19] Diperna, R. Measure-valued solutions to conservation laws. Archive for Rational Mechanics and Analysis, 88, 223-270(1985)
[20] Osher, S. and Tadmor, E. On the convergence of difference approximations to scalar conservation laws. Mathematics of Computation, 50, 19-51(1988)
[21] Sod, G. A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27, 1-31(1978)
[22] Einfeldt, B., Munz, C. D., Roe, P. L., and Sjogreen, B. P. L. On Godunov-type methods near low densities. Journal of Computational Physics, 92, 273-295(1991)
[23] Woodward, P. and Colella, P. The numercial simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54, 115-173(1984) |