[1] Czolczynki, K., Perlikowski, P., Stefanski, A., and Kapitaniak, T. Huygens' odd sympathy experiment revisited. International Journal of Bifurcation and Chaos, 21, 2047-2056(2011)
[2] Bennett, M., Schatz, M. F., Rockwood, H., and Wiesenfeld, K. Huygens's clocks. Proceedings of the Royal Society of London A, 458, 563-579(2002)
[3] Oud, W., Nijmeijer, H., and Pogromsky, A. Experimental results on Huygens synchronization. First IFAC Conference on Analysis and Control of Chaotic Systems, 39, 113-118(2006)
[4] Dilão, R. Anti-phase and in-phase synchronization of nonlinear oscillators:the Huygens's clocks system. Chaos, 19, 023118(2009)
[5] Fradkov, A. L. and Andrievsky, B. Synchronization and phase relations in the motion of twopendulums system. International Journal of Non-Linear Mechanics, 42, 895-901(2007)
[6] Kumon, M., Washizaki, R., Sato, J., Kohzawa, R., Mizumoto, I., and Iwai, Z. Controlled synchronization of two 1-DOF coupled oscillators. 15th IFAC World Congress, 35, 109-114(2002)
[7] Gantmacher, F. R. Applications of the Theory of Matrices, Translated and Revised by J. L. Brenner, Interscience Publishers, New York (1959)
[8] Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V. Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston (1994)
[9] Eneström, G. Remarque sur un théorème relatif aux racines delquation anxn+an1xn1+…a1x+ a0=0 où tous les coefficientes a sont réels et positifs. Tôhoku Mathematical Journal, 18, 34-36(1920)
[10] Rather, N. A. and Gulzar, S. On the Eneström-Kakeya theorem. Acta Mathematica Universitatis Comenianae, 83, 291-302(2014)
[11] Kakeya, S. On the limits of the roots of an algebraic equation with positive coefficients. Tôhoku Mathematical Journal, 2, 140-142(1912) |