[1] Ke, C. H. and Espinosa, H. D. Nanoelectromechanical Systems (NEMS) and Modeling. Handbook of Theoretical and Computational Nanotechnology (eds. Rieth, M. and Schommers, W.), American Scientific Publishers, California, 1–38 (2006)
[2] Zhang, L., Golod, S. V., Deckardt, E., Prinz, V., and Grützmacher, D. Free-standing Si/SiGe micro- and nano-objects. Physica E, 23(3), 280–284 (2004)
[3] Georgantzinos, S. K. and Anifantis, N. K. Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Physica E, 42(5), 1795–1801 (2010)
[4] Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323 (1975)
[5] Gurtin, M. E. and Murdoch, A. I. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431–440 (1978)
[6] Wang, G. F. and Feng, X. Q. Surface effects on buckling of nanowires under uniaxial compression. Applied Physics Letters, 94(14), 141913 (2009)
[7] He, J. and Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8(7), 1798–1802 (2008)
[8] Yan, Z. and Jiang, L. Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24), 245703 (2011)
[9] Fu, Y. and Zhang, J. Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Applied Mathematical Modelling, 35(2), 941–951 (2011)
[10] Ma, J. B., Jiang, L., and Asokanthan, S. F. Influence of surface effects on the pull-in instability of NEMS electrostatic switches. Nanotechnology, 21(50), 505708 (2010)
[11] Koochi, A., Hosseini-Toudeshky, H., Ovesy, H. R., and Abadyan, M. Modeling the influence of surface effect on instability of nano-cantilever in presence of van der Waals force. International Journal of Structural Stability and Dynamics, 13(4), 1250072 (2013)
[12] Koochi, A., Kazemi, A., Khandani, F., and Abadyan, M. Influence of surface effects on sizedependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Physica Scripta, 85(3), 035804 (2012)
[13] Rokni, H. and Lu, W. A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects. Journal of Applied Physics, 113(15), 153512 (2013)
[14] Ansari, R. and Sahmani, S. Surface stress effects on the free vibration behavior of nanoplates. International Journal of Engineering Science, 49(11), 1204–1215 (2011)
[15] Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42(2), 475–487 (1994)
[16] Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8), 1477–1508 (2003)
[17] McFarland, A. W. and Colton, J. S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. Journal of Micromechanics and Microengineering, 15, 1060–1067 (2005)
[18] Chong, A. C. M. and Lam, D. C. C. Strain gradient plasticity effect in indentation hardness of polymers. Journal of Materials Research, 14(10), 4103–4110 (1999)
[19] McElhaney, K. W., Valssak, J. J., and Nix, W. D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research, 13, 1300–1306 (1998)
[20] Nix, W. D. and Gao, H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 46, 411–425 (1998)
[21] Cao, Y., Nankivil, D. D., Allameh, S., and Soboyejo W. O. Mechanical properties of Au films on silicon substrates. Materials and Manufacturing Processes, 22, 187–194 (2007)
[22] Al-Rub, R. K. A. and Voyiadjis, G. Z. Determination of the material intrinsic length scale of gradient plasticity theory. International Journal for Multiscale Computational Engineering, 2(3), 377–400 (2004)
[23] Wang, W., Huang, Y., Hsia, K. J., Hu, K. X., and Chandra, A. A study of microbend test by strain gradient plasticity. International Journal of Plasticity, 19, 365–382 (2003)
[24] Maranganti, R. and Sharma, P. A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. Journal of the Mechanics and Physics of Solids, 55(9), 1823– 1852 (2007)
[25] Aydogdu, M. A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E, 41(9), 1651–1655 (2009)
[26] Yang, J., Ke, L. L., and Kitipornchai, S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E, 42(5), 1727–1735 (2010)
[27] Ejike, U. B. The plane circular crack problem in the linearized couple-stress theory. International Journal of Engineering Science, 7(9), 947–961 (1969)
[28] Kishida, M., Sasaki, K., and Ishii, S. Torsion of a circular bar with annular groove in couple-stress theory. International Journal of Engineering Science, 28(8), 773–781 (1990)
[29] Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C., and Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731–2743 (2002)
[30] Cosserat, E. and Cosserat, F. Theorie des Corps Deformables, Hermann et Fils, Paris (1909)
[31] Toupin, R. A. Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 11, 385–414 (1962)
[32] Koiter, W. T. Couple-stresses in the theory of elasticity: I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Series B, 67(1), 17–44 (1964)
[33] Mindlin, R. D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16, 51–78 (1964)
[34] Mindlin, R. D. and Eshel, N. N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4, 109–124 (1968)
[35] Park, S. K. and Gao, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16(11), 2355 (2006)
[36] Beni, Y. T., Koochi, A., and Abadyan, M. Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E, 43(4), 979–988 (2011)
[37] Ma, H. M., Gao, X. L., and Reddy, J. N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 56(12), 3379–3391 (2008)
[38] Ke, L. L., Wang, Y. S., Yang, J., and Kitipornchai, S. Nonlinear free vibration of size-dependent functionally graded microbeams. International Journal of Engineering Science, 50(1), 256–267 (2012)
[39] Asghari, M., Ahmadian, M. T., Kahrobaiyan, M. H., and Rahaeifard, M. On the size-dependent behavior of functionally graded micro-beams. Materials and Design, 31(5), 2324–2329 (2010)
[40] Abdi, J., Koochi, A., Kazemi, A. S., and Abadyan, M. Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory. Smart Materials and Structures, 20(5), 055011 (2011)
[41] Baghani, M. Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. International Journal of Engineering Science, 54, 99–105 (2012)
[42] Zhang, J. and Fu, Y. Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica, 47(7), 1649–1658 (2012)
[43] Ahangar, S., Rezazadeh, G., Shabani, R., Ahmadi, G., and Toloei, A. On the stability of a microbeam conveying fluid considering modified couple stress theory. International Journal of Mechanics and Materials in Design, 7(4), 327–342 (2011)
[44] Abbasnejad, B., Rezazadeh, G., and Shabani, R. Stability analysis of a capacitive FGM microbeam using modified couple stress theory. Acta Mechanica Solida Sinica, 26(4), 427–440 (2013)
[45] Gao, X. L. and Mahmoud, F. F. A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Zeitschrift für angewandte Mathematik und Physik, 65, 393–404 (2014)
[46] Gao, X. L. and Zhang, G. Y. A microstructure- and surface energy-dependent third-order shear deformation beam model. Zeitschrift für angewandte Mathematik und Physik, 66, 1–24 (2014)
[47] Gao, X. L. A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mechanica, 226, 457–474 (2014)
[48] Wang, K. F. and Wang, B. L. Influence of surface energy on the non-linear pull-in instability of nano-switches. International Journal of Non-Linear Mechanics, 59, 69–75 (2014)
[49] Zhou, S., and Gao, X. L. Solutions of half-space and half-plane contact problems based on surface elasticity. Zeitschrift für Angewandte Mathematik und Physik, 64(1), 145–166 (2013)
[50] Lu, P., He, L. H., Lee, H. P., and Lu, C. Thin plate theory including surface effects. International Journal of Solids and Structures, 43(16), 4631–4647 (2006)
[51] Dym, C. L. and Shames, I. H. Solid Mechanics: A Variational Approach, Railway Publishing House, Beijing (1984)
[52] Muñoz-Gamarra, J. L., Alcaine, P., Marigó, E., Giner, J., Uranga, A., Esteve, J., and Barniol, N. Integration of NEMS resonators in a 65 nm CMOS technology. Microelectronic Engineering, 110, 246–249 (2013)
[53] Dragoman, M., Dragoman, D., Coccetti, F., Plana, R., and Muller, A. A. Microwave switches based on graphene. Journal of Applied Physics, 105(5), 054309 (2009)
[54] Uranga, A., Verd, J., Marigó, E., Giner, J., Muñoz-Gamarra, J. L., and Barniol, N. Exploitation of non-linearities in CMOS-NEMS electrostatic resonators for mechanical memories. Sensors and Actuators A: Physical, 197, 88–95 (2013)
[55] Hierold, C., Jungen, A., Stampfer, C., and Helbling, T. Nano electromechanical sensors based on carbon nanotubes. Sensors and Actuators A: Physical, 136(1), 51–61 (2007)
[56] Batra, R. C., Porfiri, M., and Spinello, D. Electromechanical model of electrically actuated narrow microbeams. Journal of Microelectromechanical Systems, 15(5), 1175–1189 (2006)
[57] Klimchitskaya, G. L., Mohideen, U., and Mostepanenko, V. M. Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Physical Review A, 61(6), 062107 (2000)
[58] Boström, M. and Sernelius, B. E. Fractional van der Waals interaction between thin metallic films. Physical Review B, 61(3), 2204–2210 (2000)
[59] Israelachvili, J. N. and Tabor, D. R. F. S. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 331(1584), 19–38 (1972)
[60] Nayfeh, A. H. Nonlinear Oscillations, John Wiley, New York (1979) |