[1] Chou, P. Y. On velocity correlations and the solution of equation of turbulent fluctuations. Quaterly Applied Mathematics, 3, 38-54(1945)
[2] Lesieur, M. Turbulence in Fluids, Kluwer Academic, Dordrecht (1997)
[3] Orszag, S. A. Lectures on the statistical theory of turbulence. Fluid Dynamics, Les Houches Summer School of Theoretical Physics (eds. Balian, R. and Peube, J. L.), Gorden and Breach, New York (1974)
[4] Bos, W. J. T. and Rubinstein, R. On the strength of the nonlinearity in isotropic turbulence. Journal of Fluid Mechanics, 733, 158-170(2013)
[5] Bos, W., Rubinstein, R., and Fang, L. Reduction of mean-square advection in turbulent passive scalar mixing. Physics of Fluids, 24(7), 075104(2012)
[6] Fang, L., Zhang, Y. J., Fang, J., and Zhu, Y. Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Physical Review E, 94(2), 023114(2016)
[7] Fang, L. Applying the Kolmogorov Equation to the Problem of Subgrid Modeling for Large-Eddy Simulation of Turbulence, Ph. D. dissertation, Ecole centrale de Lyon (2009)
[8] Tatarskii, V. I. Use of the 4/5 Kolmogorov equation for describing some characteristics of fully developed turbulence. Physics of Fluids, 17, 035110(2005)
[9] Fang, L., Bos, W. J. T., Zhou, X. Z., Shao, L., and Bertoglio, J. P. Corrections to the scaling of the second-order structure function in isotropic turbulence. Acta Mechanica Sinica, 26(2), 151-157(2010)
[10] Hill, R. J. and Boratav, O. N. Next-order structure-function equations. Physics of Fluids, 13, 276-283(2001)
[11] Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S. Extended scalesimilarity in turbulent flows. Physical Review E, 48(1), R29-R32(1993)
[12] Benzi, R., Ciliberto, S., Baudet, C., and Chavarria, G. R. On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D, 80, 385-398(1995)
[13] McComb, W. D., Yoffe, S. R., Linkmann, M. F., and Berera, A. Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence. Physics of Fluids, 90, 053010(2014)
[14] Fang, L., Zhu, Y., Liu, Y. W., and Lu, L. P. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Physics Letters A, 379(38), 2331-2336(2015)
[15] Chevillard, L., Meneveau, C., Biferale, L., and Toschi, F. Modeling the pressure Hessian and viscous Laplacian in turbulence:comparisons with direct numerical simulation and implications on velocity gradient dynamics. Physics of Fluids, 20, 101504(2008)
[16] Chevillard, L. and Meneveau, C. Lagrangian dynamics and statistical geometric structure of turbulence. Physics Review Letters, 97, 174501(2006)
[17] Wilczek, M. and Meneveau, C. Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. Journal of Fluid Mechanics, 756, 191-225(2014)
[18] She, Z. S. and Leveque, E. Universal scaling law in fully developed turbulence. Physics Review Letters, 72, 336-339(1994)
[19] Bos, W. J. T., Chevillard, L., Scott, J., and Rubinstein, R. Reynolds number effects on the velocity increment skewness in isotropic turbulence. Physics of Fluids, 24, 015108(2012)
[20] Batchelor, G. K. The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge (1953) |