[1] Bai, G. F., Petrenko, V. F., and Baker, I. On the electrical properties of dislocations in ZnS using electric force microscopy. Scanning, 23, 160-164(2001)
[2] Chen, K. X., Dai, Q., Lee, W., Kim, J. K., Schubert, E. F., Grandusky, J., Mendrick, M., Li, X., and Smart, J. A. Effect of dislocations on electrical and optical properties of n-type Al0.34Ga0.66N. Applied Physics Letters, 93, 192108(2008)
[3] Gromov, V. E., Ivanov, Y. F., Stolboushkina, O. A., and Konovalov, S. V. Dislocation substructure evolution on Al creep under the action of the weak electric potential. Materials Science and Engineering A, 527, 858-861(2010)
[4] Ghoniem, N. M., Chen, Z. Z., and Kioussis, N. Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Physical Review B, 80, 184104(2009)
[5] Pennycook, S. J. Investigating the optical properties of dislocations by scanning transmission electron microscopy. Scanning, 30, 287-298(2008)
[6] Anderson, P. M. and Li, Z. A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface. Materials Science and Engineering A, 319-321, 182-187(2001)
[7] Püschl, W. Models for dislocation cross-slip in close-packed crystal structures:a critical review. Progress in Materials Science, 47, 415-461(2002)
[8] Otsuka, K., Kuwabara, A., Nakamura, A., Yamamoto, T., Matsunaga, K., and Ikuhara, Y. Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia. Applied Physics Letters, 82, 877-879(2003)
[9] Zheng, S. L., Ni, Y., and He, L. H. Phase field modeling of a glide dislocation transmission across a coherent sliding interface. Modelling and Simulation in Materials Science and Engineering, 23, 035002(2015)
[10] Akasheh, F., Zbib, H. M., Hirth, J. P., Hoagland, R. G., and Misra, A. Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. Journal of Applied Physics, 101, 084314(2007)
[11] Akasheh, F., Zbib, H. M., Hirth, J. P., Hoagland, R. G., and Misra, A. Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. Journal of Applied Physics, 102, 034314(2007)
[12] Hirth, J. P. and Lothe, J. Theory of Dislocations, Krieger Publishing, Florida (1982)
[13] Li, L. and Ghoniem, N. M. Twin-size effects on the deformation of nanotwinned copper. Physical Review B, 79, 075444(2009)
[14] Mara, N. A., Bhattacharyya, D., Dickerson, P., Hoagland, R. G., and Misra, A. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Applied Physics Letters, 92, 231901(2008)
[15] Mara, N. A., Bhattacharyya, D., Hirth, J. P., Dickerson, P., and Misra, A. Mechanism for shear banding in nanolayered composites. Applied Physics Letters, 97, 021909(2010)
[16] Misra, A. Twinning in nanocrystalline metals. Journal of the Minerals Metals and Materials Society, 60, 59-59(2008)
[17] Wang, J., Hoagland, R. G., Hirth, J. P., and Misra, A. Room-temperature dislocation climb in metallic interfaces. Applied Physics Letters, 94, 131910(2009)
[18] Wang, J., Hoagland, R. G., and Misra, A. Mechanics of nanoscale metallic multilayers:from atomic-scale to micro-scale. Scripta Materialia, 60, 1067-1072(2009)
[19] Wang, J. and Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Current Opinion in Solid State and Materials Science, 15, 20-28(2011)
[20] Shen, Y. and Anderson, P. M. Transmission of a screw dislocation across a coherent, slipping interface. Acta Materialia, 54, 3941-3951(2006)
[21] Shen, Y. and Anderson, P. M. Transmission of a screw dislocation across a coherent, non-slipping interface. Journal of the Mechanics and Physics of Solids, 55, 956-979(2007)
[22] Hoagland, R. G., Hirth, J. P., and Misra, A. On the role of weak interfaces in blocking slip in nanoscale layered composites. Philosophical Magazine, 86, 3537-3558(2006)
[23] Wang, J., Misra, A., Hoagland, R. G., and Hirth, J. P. Slip transmission across fcc/bcc interfaces with varying interfaceshear strengths. Acta Materialia, 60, 1503-1513(2012)
[24] Chu, H. J., Wang, J., Beyerlein, I. J., and Pan, E. Dislocation models of interfical shearing induced by an approaching lattice glide dislocation. International Journal of Plasticity, 41, 1-13(2013)
[25] Wang, J., Hoagland, R. G., Hirth, J. P., and Misra, A. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Materialia, 56, 3109-3119(2008)
[26] Gao, H., Zhang, L., and Baker, S. P. Dislocation core spreading at interfaces between metal films and amorphous substrates. Journal of the Mechanics and Physics of Solids, 50(10), 2169-2202(2002)
[27] Zbib, H. M., Dízde la Rubia, T., Rhee, M., and Hirth, J. P. 3D dislocation dynamics:stress-strain behavior and hardening mechanisms in fcc and bcc metals. Journal of Nuclear Materials, 276, 154-165(2000)
[28] Zbib, H. M., Overman, C. T., Akasheh, F., and Bahr, D. Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. International Journal of Plasticity, 27, 1618-1639(2011)
[29] Ghoniem, N. M. and Han, X. Dislocation motion in anisotropic multilayer materials. Philosophical Magazine, 85, 2809-2830(2005)
[30] Wang, Z. Q., Ghoniem, N. M., and LeSar, R. Multipole representation of the elastic field of dislocation ensembles. Physical Review B, 69, 174102(2004)
[31] Wang, Z. Q., Ghoniem, N. M., Swaminarayan, S., and LeSar, R. A parallel algorithm for 3D dislocation dynamics. Journal of Computational Physics, 219, 608-621(2006)
[32] Cai, W., Bulatov, V.V., Pierce, T. G., Hiratani, M., Rhee, M., Bartelt, M., and Tang, M. Massively-parallel dislocation dynamics simulations. Solid Mechanics and its Applications, 115, 1-11(2004)
[33] Bulatov, V. V., Rhee, M., and Cai, W. Periodic boundary conditions for dislocation dynamics simulations in three dimensions. MRS Proceedings, 653, Z1-3(2001)
[34] Vattré, A. J. and Demkowicz, M. J. Effect of interface dislocation Burgers vectors on elastic fields in anisotropic bicrystals. Computational Materials Science, 88, 110-115(2014)
[35] Lubarda, V. A. The effect of couple stresses on dislocation strain energy. International Journal of Solids and Structures, 40(15), 3807-3826(2003)
[36] Chu, H. J. and Pan, E. Elastic fields due to dislocation arrays in anisotropic bimaterials. International Journal of Solids and Structures, 51(10), 1954-1961(2014)
[37] Chu, H. J., Pan, E., Wang, J., and Beyerlein, I. J. Three-dimensional elastic displacements induced by a dislocation of polygonal shape in anisotropic elastic crystals. International Journal of Solids and Structures, 48(7), 1164-1170(2011)
[38] Pan, E. Three-dimensional Green's functions in anisotropic magneto-electro-elastic bimaterials. Journal of Mathematical Physics, 53, 815-838(2003)
[39] Pan, E. Three-dimensional Green's functions in anisotropic elasticbimaterials with imperfect interfaces. Journal of Applied Mechanics, 70, 180-190(2003)
[40] Dholabha, P. P., Pilania, H., Aguiar, J. A., Misra, A., and Uberuaga, B. P. Termination chemistrydriven dislocation structure at SrTiO3/MgO heterointerfaces. Nature Communications, 5, 5043(2014)
[41] Barnett, D. M. and Lothe, J. An image force theorem for dislocations in anisotropic bicrystals. Journal of Physics F:Metal Physics, 4, 1618-1635(1974)
[42] Dundurs, J. and Mura, T. Interaction between an edge dislocation and a circular inclusion. Journal of the Mechanics and Physics of Solids, 12(3), 177-189(1964)
[43] Ting, T. C. T. Anisotropic Elasticity:Theory and Applications, Oxford University Press, New York (1996)
[44] Stroh, A. N. Dislocations and cracks in anisotropic elasticity. Philosophical Magazine, 3, 625-646(1958)
[45] Stroh, A. N. Steady state problems in anisotropic elasticity. Journal of Mathematical Physics, 41, 77-102(1962)
[46] Misra, A., Demkowicz, M. J., Zhang, X., and Hoagland, R. G. The radiation damage tolerance of ultra-high strength nanolayered composites. The Journal of the Minerals, Metals and Materials Society, 59(9), 62-65(2007)
[47] Li, N., Wang, J., Huang, J. Y., Misra, A., and Zhang, X. In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Materialia, 63, 363-366(2010)
[48] Li, L., Anderson, P. M., Lee, M. G., Bitzek, E., Derlet, P., and van Swygenhoven, H. The stressstrain response of nanocrystalline metals:a quantized crystal plasticity approach. Acta Materialia, 57, 812-822(2009)
[49] Li, L., van Petegem, S., van Swygenhoven, H., and Anderson, P. M. Slip-induced intergranular stress redistribution in nanocrystalline Ni. Acta Materialia, 60, 7001-7010(2012) |