[1] HALL, E. O. The deformation and ageing of mild steel:Ⅲ discussion of results. Proceedings of the Physical Society Section B, 64, 495-502(1951) [2] LU, L., SHEN, Y. F., CHEN, X. H., QIAN, L. H., and LU, K. Ultrahigh strength and high electrical conductivity in copper. Science, 304, 422-426(2004) [3] YANG, F. and YANG, W. Crack growth versus blunting in nanocrystalline metals with extremely small grain size. Journal of the Mechanics and Physics of Solids, 57, 305-324(2009) [4] SCHIOTZ, J., DI TOLLA, F. D., and JACOBSEN, K. W. Softening of nanocrystalline metals at very small grain sizes. nature, 391, 561-563(1998) [5] KOCK, C. C. Structural nanocrystalline materials:an overview. Journal of Materials Science, 42, 1403-1414(2007) [6] SHEN, Y. F., LU, L., LU, Q. H., JIN, Z. H., and LU, K. Tensile properties of copper with nano-scale twins. Scripta Materialia, 52, 989-994(2005) [7] LU, L., SCHWAIGER, R., SHAN, Z. W., DAO, M., LU, K., and SURESH, S. Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia, 53, 2169-2179(2005) [8] LU, L., CHEN, X., HUANG, X., and LU, K. Revealing the maximum strength in nanotwinned copper. Science, 323, 607-610(2009) [9] CHEN, X. H. and LU, L. Work hardening of ultrafine-grained copper with nanoscale twins. Scripta Materialia, 57, 133-136(2007) [10] LU, K., LU, L., and SURESH, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 324, 349-352(2009) [11] WEI, Y. J. Scaling of maximum strength with grain size in nanotwinned fcc metals. Physical Review B, 83, 132104(2011) [12] WEI, Y. J., LI, Y., ZHU, L., LIU, Y., LEI, X., WANG, G., WU, Y., MI, Z., LIU, J., and WANG, H. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Communications, 5, 3580(2014) [13] LI, X., WEI, Y. J., LU, L., LU, K., and GAO, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. nature, 464, 877-880(2010) [14] ZHU, T., LI, J., SAMANTA, A., KIM, H. G., and SURESH, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proceedings of the National Academy of Sciences, 104, 3031-3036(2007) [15] ZHU, L., QU, S., GUO, X., and LU, J. Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. Journal of the Mechanics and Physics of Solids, 76, 162-179(2015) [16] LI, J., ZHANG, J. Y., LIU, G., and SUN, J. New insight into the stable grain size of nanotwinned Ni in steady-state creep:effect of the ratio of effective-to-internal stress. International Journal of Plasticity, 85, 172-189(2016) [17] LU, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nature Reviews Materials, 1, 16019(2016) [18] ANDRIEVSKI, R. A. Review of thermal stability of nanomaterials. Journal of Materials Science, 49, 1449-1460(2013) [19] PENG, H. R., GONG, M. M., CHEN, Y. Z., and LIU, F. Thermal stability of nanocrystalline materials:thermodynamics and kinetics. International Materials Reviews, 62, 303-333(2017) [20] TRELEWICZ, J. R. and SCHUH, C. A. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Physical Review B, 79, 094112(2009) [21] ABDELJAWAD, F. and FOILES, S. M. Stabilization of nanocrystalline alloys via grain boundary segregation:a diffuse interface model. Acta Materialia, 101, 159-171(2015) [22] CHOOKAJORN, T., MURDOCH, H. A., and SCHUH, C. A. Design of stable nanocrystalline alloys. Science, 337, 951-954(2012) [23] KIRCHHEIM, R. Grain coarsening inhibited by solute segregation. Acta Materialia, 50, 413-419(2002) [24] SABER, M., KOCH, C. C., and SCATTERGOOD, R. O. Thermodynamic grain size stabilization models:an overview. Materials Research Letters, 3, 65-75(2015) [25] KOCH, C., SCATTERGOOD, R., DARLING, K., and SEMONES, J. Stabilization of nanocrystalline grain sizes by solute additions. Journal of Materials Science, 43, 7264-7272(2008) [26] GIANLLA, D. S., VAN PETEGEM, S., LEGROS, M., BRANDSTETTER, S., VAN SWYGENHOVEN, H., and HEMKER, K. J. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Materialia, 54, 2253-2263(2006) [27] HEO, T. W. and CHEN, L. Q. Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals. Acta Materialia, 76, 68-81(2014) [28] ZHANG, H. W., HEI, Z. K., LIU, G., LU, J., and LU, K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia, 51, 1871-1881(2003) [29] CHEN, W., YOU, Z., TAO, N., JIN, Z., and LU, L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Materialia, 125, 255-264(2017) [30] ROMERO, P. A., JARVI, T. T., BECKMANN, N., MROVEC, M., and MOSELER, M. Coarse graining and localized plasticity between sliding nanocrystalline metals. Physical Review Letters, 113, 036101(2014) [31] HASLAM, A., MOLDOVAN, D., YAMAKOV, V., WOLF, D., PHILLPOT, S., and GLEITER, H. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Materialia, 51, 2097-2112(2003) [32] LI, J. C. Mechanical grain growth in nanocrystalline copper. Physical Review Letters, 96, 215506(2006) [33] LEGROS, M., GIANOLA, D. S., and HEMKER, K. J. In situ TEM observations of fast grainboundary motion in stressed nanocrystalline aluminum films. Acta Materialia, 56, 3380-3393(2008) [34] LIN, Y., WEN, H., LI, Y., WEN, B., LIU, W., and LAVERNIA, E. J. An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries. Acta Materialia, 82, 304-315(2015) [35] TONKS, M. and MILLETT, P. Phase field simulations of elastic deformation-driven grain growth in 2D copper polycrystals. Materials Science and Engineering:A, 528, 4086-4091(2011) [36] RUPERT, T. J., GIANOLA, D. S., GAN, Y., and HEMKER, K. J. Experimental observations of stress-driven grain boundary migration. Science, 326, 1686-1690(2009) [37] GLUSHKO, O. and CORDILL, M. The driving force governing room temperature grain coarsening in thin gold films. Scripta Materialia, 130, 42-45(2017) [38] CAHN, J. W., MISHIN, Y., and SUZUKI, A. Coupling grain boundary motion to shear deformation. Acta Materialia, 54, 4953-4975(2006) [39] YAMAKOV, V., WOLF, D., PHILLPOT, S. R., and GLEITER, H. Deformation twinning in nanocrystalline Al by molecular dynamics simulation. Acta Materialia, 50, 5005-5020(2002) [40] WANG, P., XU, S., LIU, J., LI, X., WEI, Y., WANG, H., GAO, H., and YANG, W. Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. Journal of the Mechanics and Physics of Solids, 98, 290-308(2017) [41] BEYERLEIN, I. J., ZHANG, X., and MISRA, A. Growth twins and deformation twins in metals. Annual Review of Materials Research, 44, 329-363(2014) [42] LUO, X. M., ZHU, X. F., and ZHANG, G. P. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nature Communications, 5, 3021(2014) [43] LUO, X. M., LI, X., and ZHANG, G. P. Forming incoherent twin boundaries:a new way for nanograin growth under cyclic loading. Materials Research Letters, 5, 95-101(2017) [44] LI, J., ZHANG, J. Y., JIANG, L., ZHANG, P., WU, K., LIU, G., and SUN, J. Twinning/detwinning-mediated grain growth and mechanical properties of free-standing nanotwinned Ni foils:grain size and strain rate effects. Materials Science and Engineering:A, 628, 62-74(2015) [45] FAN, D. and CHEN, L. Q. Computer simulation of grain growth using a continuum field model. Acta Materialia, 45, 611-622(1997) [46] HEO, T. W., WANG, Y., BHATTACHARYA, S., SUN, X., HU, S., and CHEN, L. Q. A phase-field model for deformation twinning. Philosophical Magazine Letters, 91, 110-121(2011) [47] HU, S. Y., HENAGER, C. H., and CHEN, L. Q. Simulations of stress-induced twinning and de-twinning:a phase field model. Acta Materialia, 58, 6554-6564(2010) [48] JIN, Y. M. Domain microstructure evolution in magnetic shape memory alloys:phase-field model and simulation. Acta Materialia, 57, 2488-2495(2009) [49] HONG, X., GODFREY, A., and LIU, W. Challenges in the prediction of twin transmission at grain boundaries in a magnesium alloy. Scripta Materialia, 123, 77-80(2016) [50] SINHA, S. and GURAO, N. P. In situ electron backscatter diffraction study of twinning in commercially pure titanium during tension-compression deformation and annealing. Materials and Design, 116, 686-693(2017) [51] GONG, M., HIRTH, J. P., LIU, Y., SHEN, Y., and WANG, J. Interface structures and twinning mechanisms of twins in hexagonal metals. Materials Research Letters, 5, 449-464(2017) |