[1] BAO, W. Z., JIN, S., and MARKOWICH, P. A. Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM Journal on Scientific Computing, 25(1), 27-64(2003) [2] FEIT, M. D., FLECK, J. A., and STEIGER, A. Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47, 412-433(1982) [3] AKRIVIS, G. D. Finite difference discretization of the cubic Schrödinger equation. IMA Journal of Numerical Analysis, 13(1), 115-124(1993) [4] BAO, W. Z. and CAI, Y. Y. Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM Journal on Numerical Analysis, 50(2), 492-521(2012) [5] HAN, H. D., JIN, J. C., and WU, X. N. A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain. Computers and Mathematics with Applications, 50(8), 1345-1362(2005) [6] AKRIVIS, G. D., DOUGALIS, V. A., and KARAKASHIAN, O. A. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numerische Mathematik, 59(1), 31-53(1991) [7] ANTONOPOULOU, D. C., KARALI, G. D., PLEXOUSAKIS, M., and ZOURARIS, G. E. CrankNicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain. Mathematics of Computation, 84(294), 1571-1598(2015) [8] JIN, J. C. and WU, X. N. Convergence of a finite element scheme for the two-dimensional timedependent Schrödinger equation in a long strip. Journal of Computational and Applied Mathematics, 234(3), 777-793(2010) [9] KYZA, I. A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations. ESAIM Mathematical Modelling and Numerical Analysis, 45(4), 761-778(2011) [10] LEE, H. Y. Fully discrete methods for the nonlinear Schrödinger equation. Computers and Mathematics with Applications, 28(6), 9-24(1994) [11] TANG, Q., CHEN, C. M., and LIU, L. H. Space-time finite element method for Schrödinger equation and its conservation. Applied Mathematics and Mechanics (English Edition), 27(3), 335-340(2006) https://doi.org/10.1007/s10483-006-0308-z [12] WANG, J. Y. and HUANG Y. Q. Fully discrete Galerkin finite element method for the cubic nonlinear Schrödinger equation. Numerical Mathematics:Theory, Methods and Applications, 10(3), 670-687(2017) [13] ANTONOPOULOU, D. C. and PLEXOUSAKIS, M. Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains. Numerische Mathematik, 115(4), 585-608(2010) [14] KARAKASHIAN, O. A. and MAKRIDAKIS C. A space-time finite element method for the nonlinear Schrödinger equation:the discontinuous Galerkin method. Mathematics of Computation, 67(222), 479-499(1998) [15] LU, W. Y., HUANG, Y. Q., and LIU, H. L. Mass preserving discontinuous Galerkin methods for Schrödinger equations. Journal of Computational Physics, 282, 210-226(2015) [16] GUO, L. and XU, Y. Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator. Journal of Scientific Computing, 65(2), 622-647(2015) [17] WANG, W. and SHU, C. W. The WKB local discontinuous Galerkin method for the simulation of Schrödinger equation in a resonant tunneling diode. Journal of Scientific Computing, 40(1-3), 360-374(2009) [18] XU, Y. and SHU, C. W. Local discontinuous Galerkin methods for nonlinear Schrödinger equations. Journal of Computational Physics, 205, 72-97(2005) [19] CHEN, C. M. and HUANG Y. Q. High Accuracy Theory of Finite Element Methods (in Chinese), Hunan Science Press, Changsha, 235-248(1995) [20] LIN, Q. and YAN, N. N. Construction and Analysis of High Efficient Finite Elements (in Chinese), Hebei University Press, Baoding, 175-185(1996) [21] WAHLBIN, L. B. Superconvergence in Galerkin Finite Element Methods, Springer, Berlin, 48-64(1995) [22] YAN, N. N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, Science Press, Beijing, 35-156(2008) [23] ARNOLD, D. N., DOUGLAS, J., Jr., and THOMÉE, V. Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Mathematics of Computation, 36(153), 53-63(1981) [24] CHEN, C. M. and HU, S. F. The highest order superconvergence for bi-k degree rectangular elements at nodes:a proof of 2k-conjecture. Mathematics of Computation, 82(283), 1337-1355(2013) [25] CHEN, Y. P. Superconvergence of mixed finite element methods for optimal control problems. Mathematics of Computation, 77(263), 1269-1291(2008) [26] CHEN, Y. P., HUANG, Y. Q., LIU, W. B., and YAN, N. N. Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. Journal of Scientific Computing, 42(3), 382-403(2010) [27] HUANG, Y. Q., LI, J. C., WU, C., and YANG, W. Superconvergence analysis for linear tetrahedral edge elements. Journal of Scientific Computing, 62(1), 122-145(2015) [28] HUANG, Y. Q., YANG, W., and YI, N. Y. A posteriori error estimate based on the explicit polynomial recovery. Natural Science Journal of Xiangtan University, 33(3), 1-12(2011) [29] LIN, Q. and ZHOU, J. M. Superconvergence in high-order Galerkin finite element methods. Computer Methods in Applied Mechanics and Engineering, 196(37), 3779-3784(2007) [30] SHI, D. Y. and PEI, L. F. Superconvergence of nonconforming finite element penalty scheme for Stokes problem using L2 projection method. Applied Mathematics and Mechanics (English Edition), 34(7), 861-874(2013) https://doi.org/10.1007/s10483-013-1713-x [31] WHEELER, M. F. and WHITEMAN, J. R. Superconvergence of recovered gradients of discrete time/piecewise linear Galerkin approximations for linear and nonlinear parabolic problems. Numerical Methods for Partial Differential Equations, 10(3), 271-294(1994) [32] LIN, Q. and LIU, X. Q. Global superconvergence estimates of finite element method for Schrödinger equation. Journal of Computational Mathematics, 16(6), 521-526(1998) [33] SHI, D. Y., WANG, P. L., and ZHAO, Y. M. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Applied Mathematics Letters, 38, 129-134(2014) [34] TIAN, Z. K., CHEN, Y. P., and WANG J. Y. Superconvergence analysis of bilinear finite element for the nonlinear Schrödinger equation on the rectangular mesh. Advances in Applied Mathematics and Mechanics, 10(2), 468-484(2018) [35] WANG, J. Y., HUANG, Y. Q., TIAN, Z. K., and ZHOU, J. Superconvergence analysis of finite element method for the time-dependent Schrödinger equation. Computers and Mathematics with Applications, 71(10), 1960-1972(2016) [36] ZHOU, L. L., XU, Y., ZHANG, Z. M., and CAO, W. X. Superconvergence of local discontinuous Galerkin method for one-dimensional linear Schrödinger equations. Journal of Scientific Computing, 73(2/3), 1290-1315(2017) [37] HU, H. L., CHEN, C. M., and PAN, K. J. Time-extrapolation algorithm (TEA) for linear parabolic problems. Journal of Computational Mathematics, 32(2), 183-194(2014) |