[1] GREENEWALT, C. H. Dimensional relationships for flying animals. Smithsonian Miscellaneous Collections Needs Pagination, 144, 1-46(1962) [2] PENNYCUICK, C. J. Power requirements for horizontal flight in the pigeon columba livia. Journal of Experimental Biology, 49, 527-555(1968) [3] PENNYCUICK, C. J. Speeds and wing-beat frequencies of migration birds compared with calculated benchmarks. Journal of Experimental Biology, 204, 3283-3294(2001) [4] SHYY, W., BERG, M., and LJUNGQVIST, D. Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35, 455-505(1999) [5] SHYY, W., AONO, H., CHIMAKURTHI, S. K., TRIZILA, P., KANG, C. K., CESNIK, C. E. S., and LIU, H. Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46(7), 284-327(2010) [6] ELLINGTON, C. P., VANDENBERG, C., WILLMOTT, A. P., and THOMAS, A. L. R. Leadingedge vortices in insect flight. nature, 384, 626-630(1996) [7] CHEN, Y. F., WANG, H. Q., HELBLING, E. F., JAFFERIS, N. T., ZUFFEREY, R., ONG, A., MA, K., GRAVISH, N., CHIRARATTANANON, P., KOVAC, M., and WOOD, R. J. A biologically inspired, flapping-wing, hybrid aerial-aquatic micro robot. Science Robotics, 2, eaao5619(2017) [8] KEENNON, M., KLINGEBIEL, K., and WON, H. Development of the nano hummingbird:a tailless flapping wing micro air vehicle. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics, Nashville, Tennessee (2012) [9] SEND, W., FISCHER, M., JEBENS, K., MUGRAUER, R., NAGARATHINAM, A., and SCHARSTEIN, F. Artificial hinged-wing bird with active torsion and partially linear kinematics. 28th International Congress of the Aeronautical Sciences, Brisbane, Australia, 1148-1157(2012) [10] ANDERSON, J. M., STREITLIEN, K., BARRETT, D. S., and TRIANTAFYLLOU, M. S. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics, 360, 41-72(1998) [11] PLATZER, M., JONES, K. D., YOUNG, J., and LAI, J. C. S. Flapping-wing aerodynamics:progress and challenges. AIAA Journal, 46, 2136-2149(2008) [12] NUDDS, R. L., TAYLOR, G. K., and THOMAS, A. L. R. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wing beat frequency and stroke amplitude relate and scale with size and flight speed in birds. Proceedings of the Royal Society B:Biological Sciences, 271, 2071-2076(2004) [13] SCHOUVEILER, L., HOVER, F., and TRIANTAFYLLOU, M. Performance of flapping foil propulsion. Journal of Fluid and Structures, 20, 949-959(2005) [14] TIAN, F., LUO, H., SONG, J., and LU, X. Force production and asymmetric deformation of a flexible flapping wing in forward flight. Journal of Fluids and Structures, 36, 149-161(2013) [15] UNGER, R., HAUPT, M. C., HORST, P., and RADESPIEL, R. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow. Journal of Fluids and Structures, 28, 72-88(2012) [16] HEATHCOTE, S., WANG, Z., and GURSUL, I. Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures, 24, 183-199(2008) [17] MAZAHERI, K. and EBRAHIMI, A. Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight. Journal of Fluids and Structures, 27, 586-595(2011) [18] ABDUL, N. and DIMITRIADIS, G. Experimental study of wings undergoing active root flapping and pitching. Journal of Fluids and Structures, 49, 687-704(2014) [19] ITO, Y. and NAKAHASHI, K. Flow simulation of flapping wings of an insect using overset unstructured grid. 15th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Anaheim, CA (2001) [20] LIANG, B. and SUN, M. Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions. Chinese Journal of Aeronautics, 24(4), 396-409(2011) [21] SUN, M. and WANG, J. K. Flight stabilization control of a hovering model insect. Journal of Experimental Biology, 210(15), 2714-2722(2007) [22] DAI, H., LUO, H., and DOYLE, J. F. Dynamic pitching of an elastic rectangular wing in hovering motion. Journal of Fluid Mechanics, 693, 473-499(2012) [23] WANG, S., ZHANG, X., HE, G., and LIU, T. Lift enhancement by dynamically changing wingspan in forward flapping flight. Physical Fluids, 26(6), 169-230(2013) [24] LIU, T. S., KUYKENDOLL, K., RHEW, R., and JONES, S. Avian wing geometry and kinematics. AIAA Journal, 44, 954-963(2006) [25] CHANG, X. H., ZHANG, L. P., and HE, X. Numerical study of the plunging-pitching motion of S1223 airfoil (in Chinese). Acta Aerodynamic Sinica, 35(1), 62-70(2017) [26] CHANG, X. H., MA, R., and ZHANG, L. P. Numerical study on the folding mechanism of seagull's flapping wing (in Chinese). Acta Aerodynamic Sinica, 36(1), 135-143(2018) [27] PHILIPS, P. J., EAST, R. A., and PRATT, N. H. An unsteady lifting line theory of flapping wings with application to the forward flight of birds. Journal of Fluid Mechanics, 112, 97-125(1981) [28] ZENG, R. Aerodynamic Characteristics of Flapping-wing MAV Simulating Bird Flight (in Chinese), Ph.D. dissertation, Nanjing University of Aeronautics and Astronautics (2004) [29] GUAN, Z. W. and YU, Y. L. Aerodynamics and mechanisms of elementary morphing models for flapping wing in forward flight of bat. Applied Mathematics and Mechanics (English Edition), 36(5), 669-680(2015) https://doi.org/10.1007/s10483-015-1931-7 [30] MILLER, L. A. and PESKIN, C. S. When vortices stick:an aerodynamic transition in tiny insect flight. Journal of Experimental Biology, 207, 3073-3088(2004) [31] LIU, H. and ELLINGTON, C. P. Computational fluid dynamic study of hawkmoth hovering. Journal of Experimental Biology, 201, 461-477(1998) [32] HE, X., ZHANG, L. P., ZHAO, Z., and CHANG, X. H. Research and development of structured/unstructured hybrid CFD software. Transactions of Nanjing University of Aeronautics & Astronautics, 30, 116-120(2013) [33] HE, X., HE, X. Y., HE, L., ZHAO, Z., and ZHANG, L. P. HyperFLOW:a structured/unstructured hybrid integrated computational environment for multi-purpose fluid simulation. Procedia Engineering, 126, 645-649(2015) [34] ZHANG, L. P., CHANG, X. H., DUAN, X. P., ZHAO, Z., and HE, X. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems. Computers & Fluids, 62, 45-63(2012) [35] ZHANG, L. P. and WANG, Z. J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes. Computers and Fluids, 33, 891-916(2004) [36] CHANG, X. H., MA, R., ZHANG, L. P., HE, X., and LI, M. Further study on the geometric conservation law for finite volume method on dynamic unstructured mesh. Computers and Fluids, 120, 98-110(2015) [37] RENDALL, T. C. S. and ALLEN, C. B. Reduced surface point selection options for efficient mesh deformation using radial basis functions. Journal of Computational Physics, 229, 2810-2820(2010) [38] WANG, N. H., LI, M., and ZHANG, L. P. Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 50(3), 527-537(2018) [39] ASHRAF, M. A., YOUNG, J., and LAI, J. C. S. Reynolds number, thickness and camber effects on flapping airfoil propulsion. Journal of Fluids and Structures, 27(2), 145-160(2011) [40] TUNCER, I. H. and PLATZER, M. R. Thrust generation due to airfoil flapping. AIAA Journal, 34, 324-331(1996) [41] LIN, S. and HU, J. J. Aerodynamic performance study of flapping-wing flow fields. 23rd AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, Toronto (2005) |