[1] BASKURT, O. K. Handbook of Hemorheology and Hemodynamics, IOS Press, Inc., Virginia (2007) [2] XU, D., KALIVIOTIS, E., MUNJIZA, A., AVITAL, E., JI, C. N., and WILLIAMS, J. Large scale simulation of red blood cell aggregation in shear flows. Journal of Biomechanics, 46, 1810-1817(2013) [3] AHMED, F., MEHRABADI, M., LIU, Z. X., BARABINO, G. A., and AIDUN, C. K. Internal viscosity-dependent margination of red blood cells in microfluidic channels. Journal of Biomechanical Engineering, 140, 061013(2018) [4] CHANG, H. Y., LI, X. J., and KARNIADAKIS, G. E. Modeling of biomechanics and biorheology of red blood cells in type 2 diabetes mellitus. Biophysical Journal, 113, 481-490(2017) [5] KABACAOGLU, G., QUAIFE, B., and BIROS, G. Low-resolution simulations of vesicle suspensions in 2D. Journal of Computational Physics, 357, 43-77(2018) [6] BALOGH, P. and BAGCHI, P. Direct numerical simulation of cellular-scale blood flow in 3D microvascular networks. Biophysical Journal, 113, 2815-2826(2017) [7] FEDOSOV, D. A., NOGUCHI, H., and GOMPPER, G. Multiscale modeling of blood flow:from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13, 239-258(2014) [8] FREUND, J. B. Numerical simulation of flowing blood cells. Annual Review of Fluid Mechanics, 46, 67-95(2014) [9] OMORI, T., HOSAKA, H., IMAI, Y., YAMAGUCHI, T., and ISHIKAWA, T. Numerical analysis of a red blood cell flowing through a thin micropore. Physical Review E, 89, 013008(2014) [10] YE, T., NHAN, P. T., KHOO, B. C., and LIM, C. T. A file of red blood cells in tube flow:a three-dimensional numerical study. Journal of Applied Physics, 116, 124703(2014) [11] FEDOSOV, D. A., CASWELL, B., and KARNIADAKIS, G. E. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal, 98, 2215-2225(2010) [12] FEDOSOV, D. A., PAN, W. X., CASWELL, B., GOMPPER, G., and KARNIADAKIS, G. E. Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 108, 11772-11777(2011) [13] CHESNUTT, J. K. W. and MARSHALL, J. S. Blood cell transport and aggregation using discrete ellipsoidal particles. Computers and Fluids, 38, 1782-1794(2009) [14] XU, D., JI, C., AVITAL, E., KALIVIOTIS, E., MUNJIZA, A., and WILLIAMS, J. An investigation on the aggregation and rheodynamics of human red blood cells using high performance computations. Scientifica, 2017, 6524156(2017) [15] YAZDANI, A. and KARNIADAKIS, G. E. Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. Soft Matter, 12, 4339-4351(2016) [16] LI, H., CHANG, H. Y., YANG, J., LU, L., TANG, Y. H., and LYKOTRAFITIS, G. Modeling biomembranes and red blood cells by coarse-grained particle methods. Applied Mathematics and Mechanics (English Edition), 39(1), 3-20(2018) https://doi.org/10.1007/s10483-018-2252-6 [17] YE, H. L., SHEN, Z. Q., and LI, Y. Computational modeling of magnetic particle margination within blood flow through LAMMPS. Computational Mechanics, 62, 457-476(2018) [18] SPANN, A., CAMPBELL, J. E., FITZGIBBON, S. R., and RODRIGUEZ, A. The effect of hematocrit on platelet adhesion:experiments and simulations. Biophysical Journal, 111, 577-588(2016) [19] GEKLE, S. Strongly accelerated margination of active particles in blood flow. Biophysical Journal, 110, 514-520(2016) [20] GROEMER, H. Some basic properties of packing and covering constants. Discrete and Computational Geometry, 1, 183-193(1986) [21] DESMOND, K. W. and WEEKS, E. R. Random close packing of disks and spheres in confined geometries. Physical Review E, 80, 051305(2009) [22] DESMOND, K. W. and WEEKS, E. R. Influence of particle size distribution on random close packing of spheres. Physical Review E, 90, 022204(2014) [23] CAMENEN, J. F., DESCANTES, Y., and RICHARD, P. Effect of confinement on dense packings of rigid frictionless spheres and polyhedra. Physical Review E, 86, 061317(2012) [24] NAJAFI, J., STOOP, N., WITTEL, F., and HABIBI, M. Ordered packing of elastic wires in a sphere. Physical Review E, 85, 061108(2012) [25] HIHINASHVILI, R. and BLUMENFELD, R. Statistical-mechanical characteristics of dense planar granular systems. Granular Matter, 14, 277-282(2012) [26] KURITA, R. and WEEKS, E. R. Experimental study of random-close-packed colloidal particles. Physical Review E, 82, 030401(2010) [27] WANG, X. Z. Mean-field cage theory for the random close packed state of a metastable hardsphere glass. Physica A:Statistical Mechanics and Its Applications, 391, 3566-3573(2012) [28] RITVANEN, J. and JALALI, P. On near-wall effects in hard disk packing between two concentric cylinders. Physica A:Statistical Mechanics and Its Applications, 387, 5381-5386(2008) [29] KURITA, R. and WEEKS, E. R. Incompressibility of polydisperse random-close-packed colloidal particles. Physical Review E, 84, 030401(2011) [30] MUNJIZA, A. The Combined Finite-Discrete Element Method, John Wiley & Sons, Ltd., New York (2004) [31] MUNJIZA, A. A., KNIGHT, E. E., and ROUGIER, E. Computational Mechanics of Discontinua, John Wiley & Sons, Ltd., New York (2011) [32] JI, C., MUNJIZA, A., AVITAL, E., MA, J., and WILLIAMS, J. J. R. Direct numerical simulation of sediment entrainment in turbulent channel flow. Physics of Fluids, 25, 056601(2013) [33] JI, C. N., ANTE, M., ELDAD, A., XU, D., and JOHN, W. Numerical investigation of particle saltation in the bed-load regime. Science China-Technological Sciences, 57, 1500-1511(2014) [34] JI, C. N., MUNJIZA, A., AVITAL, E., XU, D., and WILLIAMS, J. Saltation of particles in turbulent channel flow. Physical Review E, 89, 052202(2014) [35] DAO, M., LIM, C. T., and SURESH, S. Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids, 51, 2259-2280(2003) [36] EVANS, E. and FUNG, Y. C. Improved measurements of the erythrocyte geometry. Microvascular Research, 4, 335-347(1972) [37] LIU, Y. L. and LIU, W. K. Rheology of red blood cell aggregation by computer simulation. Journal of Computational Physics, 220, 139-154(2006) [38] SUI, Y., CHEW, Y. T., and LOW, H. T. A lattice Boltzmann study on the large deformation of red blood cells in shear flow. International Journal of Modern Physics C, 18, 993-1011(2007) [39] SUI, Y., CHEW, Y. T., ROY, P., CHENG, Y. P., and LOW, H. T. Dynamic motion of red blood cells in simple shear flow. Physics of Fluids, 20, 112106(2008) [40] TANG, Y. H. and KARNIADAKIS, G. E. Accelerating dissipative particle dynamics simulations on GPUs:Algorithms, numerics and applications. Computer Physics Communications, 185, 2809- 2822(2014) [41] DEULING, H. J. and HELFRICH, W. Red blood-cell shapes as explained on basis of curvature elasticity. Biophysical Journal, 16, 861-868(1976) [42] LEI, H. and KARNIADAKIS, G. E. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophysical Journal, 102, 185-194(2012) [43] PARK, Y., BEST, C. A., BADIZADEGAN, K., DASARI, R. R., FELD, M. S., KURIABOVA, T., HENLE, M. L., LEVINE, A. J., and POPESCU, G. Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 107, 6731-6736(2010) [44] TRIPETTE, J., ALEXY, T., HARDY-DESSOURCES, M. D., MOUGENEL, D., BELTAN, E., CHALABI, T., CHOUT, R., ETIENNE-JULAN, M., HUE, O., MEISELMAN, H. J., and CONNES, P. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica-the Hematology Journal, 94, 1060-1065(2009) [45] DIEZ-SILVA, M., DAO, M., HAN, J. Y., LIM, C. T., and SURESH, S., Shape and biomechanical characteristics of human red blood cells in health and disease. Mrs Bulletin, 35, 382-388(2010) [46] MEHRABADI, M., KU, D. N., and AIDUN, C. K. Effects of shear rate, confinement, and particle parameters on margination in blood flow. Physical Review E, 93, 023109(2016) [47] LINDERKAMP, O., WU, P. Y. K., and MEISELMAN, H. J. Geometry of neonatal and adult red blood cells. Pediatric Research, 17, 250-253(1983) [48] TOMAIUOLO, G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics, 8, 051501(2014) [49] HARIPRASAD, D. S. and SECOMB, T. W. Motion of red blood cells near microvessel walls:effects of a porous wall layer. Journal of Fluid Mechanics, 705, 195-212(2012) [50] GUCKENBERGER, A., SCHRAML, M. P., CHEN, P. G., LEONETTI, M., and GEKLE, S. On the bending algorithms for soft objects in flows. Computer Physics Communications, 207, 1-23(2016) |