[1] MOFID, H., EMMERMANN, A., ALM, M., and ZORNIG, C. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327, 9-25(2009) [2] HE, Q. B. and JIANG, T. X. Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure. Applied Physics Letters, 110(21), 213901(2017) [3] GAO, C., GAO, S., LIU, H., JIN, L., LU, J., and LI, P. Optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets theoretically, numerically and experimentally. Microsystem Technologies, 16, 1-11(2017) [4] WANG, H. R., HU, H. P., YANG, J. S., and HU, Y. T. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics (English Edition), 34(5), 589-596(2013) https://doi.org/10.1007/s10483-013-1693-x [5] GU, L. and LIVERMORE, C. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Materials and Structures, 20, 045004(2011) [6] DECHANT, E., FEDULOV, F., CHASHIN, D. V., FETISOV, L. Y., FETISOV, Y. K., and SHAMONIN, M. Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers. Smart Materials and Structures, 26, 065021(2017) [7] LIU, H., LEE, C., KOBAYASHI, T., TAY, C. J., and QUAN, C. Investigation of a mems piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Materials and Structures, 21, 035005(2012) [8] CHEN, J., YANG, J., GUO, H. Y., LI, Z. L., ZHENG, L., SU, Y. J., WEN, Z., FAN, X., and WANG, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano, 9, 12334(2015) [9] PILLATSCH, P., YEATMAN, E. M., and HOLMES, A. S. Magnetic plucking of piezoelectric beams for frequency up-converting energy harvesters. Smart Material and Structures, 23, 25009-25020(2013) [10] MATEU, L. and ECHETO, F. M. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Journal of Intelligent Material Systems and Structures, 16, 835-845(2007) [11] ROUNDY, S., LELAND, E. S., BAKER, J., CARLETON, E., REILLY, E., and LAI, E. Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 4, 28-36(2005) [12] AYED, S. B., ABDELKEFI, A., NAJAR, F., and HAJJ, M. R. Design and performance of variable shaped piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures, 25, 174-186(2014) [13] BENASCIUTTI, D., MORO, L., ZELENIKA, S., and BRUSA, E. Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsystem Technologies, 16, 657-668(2010) [14] MUTHALIF, A. G. A. and NORDIN, N. H. D. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting:modeling, simulation and experimental results. Mechanical Systems and Signal Processing, 54-55, 417-426(2015) [15] TABATABAEI, S. M. K., BEHBAHANI, S., and RAJAEIPOUR, P. Multi-objective shape design optimization of piezoelectric energy harvester using artificial immune system. Microsystem Technologies, 22, 2435-2446(2016) [16] ZHANG, G., GAO, S., LIU, H., and NIU, S. A low frequency piezoelectric energy harvester with trapezoidal cantilever beam:theory and experiment. Microsystem Technologies, 23, 3457-3466(2017) [17] ZHANG, G., GAO, S., and LIU, H. A utility piezoelectric energy harvester with low frequency and high-output voltage:theoretical model, experimental verification and energy storage. AIP Advances, 6, 137-156(2016) [18] JIN, L., GAO, S., ZHOU, X., and ZHANG, G. The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsystem Technologies, 23, 4805-4814(2017) [19] LI, P., GAO, S., NIU, S., LIU, H., and CAI, H. An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Materials and Structures, 23, 065016(2014) [20] LI, P., GAO, S., CAI, H., and WANG, H. Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsystem Technologies, 15, 1915-1924(2014) [21] ZHOU, X., GAO, S., LIU, H., and GUAN, Y. Effects of introducing nonlinear components for a random excited hybrid energy harvester. Smart Materials and Structures, 26, 015008(2017) |