[1] XU, W., WANG, J., DING, F., CHEN, X., NASYBULIN, E., ZHANG, Y., and ZHANG, J. G. Lithium metal anodes for rechargeable batteries. Energy and Environmental Science, 7, 513-537(2014) [2] TARASCON, J. M. and ARMAND, M. Issues and challenges facing rechargeable lithium batteries. nature, 414, 359-367(2001) [3] CHU, S. and MAJUMDAR, A. Opportunities and challenges for a sustainable energy future. nature, 488, 294-303(2012) [4] LIU, B., ZHANG, J. G., and XU, W. Advancing lithium metal batteries. Joule, 2, 833-845(2018) [5] ALBERTUS, P., BABINEC, S., LITZELMAN, S., and NEWMAN, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 3, 16-21(2018) [6] ZHANG, X., WANG, A., LIU, X., and LUO, J. Dendrites in lithium metal anodes:suppression, regulation, and elimination. Accounts of Chemical Research, 52, 3223-3232(2019) [7] LIN, D., LIU, Y., and CUI, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194-206(2017) [8] WANG, X., ZENG, W., HONG, L., XU, W., YANG, H., WANG, F., DUAN, H., TANG, M., and JIANG, H. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 3, 227-235(2018) [9] GUO, Y., LI, H., and ZHAI, T. Reviving lithium-metal anodes for next-generation high-energy batteries. Advanced Materials, 29, 1700007(2017) [10] LIN, D., LIU, Y., and CUI, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194-206(2017) [11] AURBACH, D., MARKOVSKY, B., SHECHTER, A., EIN-ELI, Y., and COHEN, H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. Journal of the Electrochemical Society, 143, 3809-3820(1996) [12] AURBACH, D., ZABAN, A., GOFER, Y., EIN-ELI, Y., WEISSMAN, I., CHUSID, O., and ABRAMSON, O. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources, 54, 76-84(1995) [13] MURUGAN, R., THANGADURAI, V., and WEPPNER, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 46, 7778-7781(2007) [14] KIM, K. H., IRIYAMA, Y., YAMAMOTO, K., KUMAZAKI, S., ASAKA, T., TANABE, K., FISHER, C. A. J., HIRAYAMA, T., MURUGAN, R., and OGUMI, Z. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. Journal of Power Sources, 196, 764-767(2011) [15] GIREAUD, L., GRUGEON, S., LARUELLE, S., YRIEIX, B., and TARASCON, J. M. Lithium metal stripping/plating mechanisms studies:a metallurgical approach. Electrochemistry Communications, 8, 1639-1649(2006) [16] MAYERS, M. Z., KAMINSKI, J. W., and MILLER, T. F. III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. Journal of Physical Chemistry C, 116, 26214-26221(2012) [17] LEE, H., LEE, D. J., KIM, Y. J., PARK, J. K., and KIM, H. T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 284, 103-108(2015) [18] TIKEKAR, M. D., CHOUDHURY, S., TU, Z., and ARCHER, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1, 16114(2016) [19] YANG, C. P., YIN, Y. X., ZHANG, S. F., LI, N. W., and GUO, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 6, 8058(2015) [20] LU, L. L., GE, J., YANG, J. N., CHEN, S. M., YAO, H. B., ZHOU, F., and YU, S. H. Freestanding copper nanowire network current collector for improving lithium anode performance. Nano Letters, 16, 4431-4437(2016) [21] YAN, K., LU, Z., LEE, H. W., XIONG, F., HSU, P. C., LI, Y., ZHAO, J., CHU, S., and CUI, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 1, 16010(2016) [22] YUN, Q., HE, Y. B., LV, W., ZHAO, Y., LI, B., KANG, F., and YANG, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28, 6932-6939(2016) [23] HE, Y., REN, X., XU, Y., ENGELHARD, M. H., LI, X., XIAO, J., LIU, J., ZHANG, J. G., XU, W., and WANG, C. Origin of lithium whisker formation and growth under stress. Nature Nanotechnology, 14, 1042-1047(2019) [24] MONROE, C. and NEWMAN, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 152, A396-A404(2005) [25] AHMAD, Z. and VISWANATHAN, V. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Physical Review Letters, 119, 056003(2017) [26] CHASON, E., JADHAV, N., PEI, F., BUCHOVECKY, E., and BOWER, A. Growth of whiskers from Sn surfaces:driving forces and growth mechanisms. Progress in Surface Science, 88, 103-131(2013) [27] CHASON, E., ENGWALL, A., PEI, F., LAFOURESSE, M., BERTOCCI, U., STAFFORD, G., MURPHY, J. A., LENIHAN, C., and BUCKLEY, D. N. Understanding residual stress in electrodeposited Cu thin films. Journal of the Electrochemical Society, 160, D3285-D3289(2013) [28] SHIN, J. W. and CHASON, E. Compressive stress generation in Sn thin films and the role of grain boundary diffusion. Physical Review Letters, 103, 056102(2009) [29] YAMAKI, J., TOBISHIMA, S., HAYASHI, K., SAITO, K., NEMOTO, Y., and ARAKAWA, M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 74, 219-227(1998) [30] ABERMANN, R. and KOCH, R. The internal-stress in thin silver, copper and gold-films. Thin Solid Films, 129, 71-78(1985) [31] SPAEPEN, F. Interfaces and stresses in thin films. Acta Materials, 48, 31-42(2000) [32] CHASON, E., SHELDON, B. W., FREUND, L. B., FLORO, J. A., and HEARNE, S. J. Origin of compressive residual stress in polycrystalline thin films. Physical Review Letters, 88, 156103(2002) [33] KRESSE, G. and FURTHMÜLLER, J. Efficient iterative schemes for ab initio total-energy cal-culations using a plane-wave basis set. Physical Review B, 54, 11169-11186(1996) [34] KRESSE, G. and FURTHMÜLLER, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996) [35] BLÖCHL, P. E. Projector augmented-wave method. Physical Review B, 50, 17953-17979(1994) [36] PERDEW, J. P., CHEVARY, J. A., VOSKO, S. H., JACKSON, K. A., PEDERSON, M. R., SINGH, D. J., and FIOLHAIS, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687(1992) [37] NOSÉ, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81, 511-519(1984) [38] COVINGTON, E. J. and MONTGOMERY, D. J. Lattice constants of separated lithium isotopes. The Journal of Chemical Physics, 27, 1030-1032(1957) [39] DAVEY, W. P. Precision measurements of the lattice constants of twelve common metals. Physical Review, 25, 753(1925) [40] LU, Z., LV, P., YANG, Z., LI, S., MA, D., and WU, R. A promising single atom catalyst for CO oxidation:Ag on boron vacancies of h-BN sheets. Physical Chemistry Chemical Physics, 19, 16795-16805(2017) [41] TANG, Y. L., ZHU, Y. L., MA, X. L., BORISEVICH, A. Y., MOROZOVSKA, A. N., ELISEEV, E. A., WANG, W. Y., WANG, Y. J., XU, Y. B., ZHANG, Z. D., and PENNYCOOK, S. J. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science, 348, 547-551(2015) [42] GAO, P., YANG, S., ISHIKAWA, R., LI, N., FENG, B., KUMAMOTO, A., SHIBATA, N., YU, P., and IKUHARA, Y. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Physical Review Letters, 120, 267601(2018) |