[1] LIU, X. D., OSHER, S., and CHAN, T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1), 200-212(1994) [2] JIANG, G. S. and SHU, C. W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202-228(1996) [3] TAYLOR, E. M., WU, M., and MARTÍN M. P. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. Journal of Computational Physics, 223(1), 384-397(2007) [4] JOHNSEN, E., LARSSON, J., BHAGATWALA, A. V., CABOT, W. H., MOIN, P., OLSON, B. J., RAWAT, P. S., SHANKAR, S. K., SJÖGREEN, B., YEE, H. C., ZHONG, X., and LELE, S. K. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. Journal of Computational Physics, 229(4), 1213-1237(2010) [5] LELE, S. K. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42(1992) [6] TAM, C. K. W. and WEBB, J. C. Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics, 107(2), 262-281(1993) [7] LOCKARD, D. P., BRENTNER, K. S., and ATKINS, H. L. High-accuracy algorithms for computational aeroacoustics. AIAA Journal, 33(2), 246-251(1995) [8] KIM, J. W. and LEE, D. J. Optimized compact finite difference schemes with maximum resolution. AIAA Journal, 34(5), 887-893(1996) [9] WEIRS, V. and CANDLER, G. Optimization of weighted ENO schemes for DNS of compressible turbulence. 13th Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Reston (1997) [10] MARTÍN, M. P., TAYLOR, E. M., WU, M., and WEIRS, V. G. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 220(1), 270-289(2006) [11] ARSHED, G. M. and HOFFMANN, K. A. Minimizing errors from linear and nonlinear weights of WENO scheme for broadband applications with shock waves. Journal of Computational Physics, 246, 58-77(2013) [12] WANG, Z. J. and CHEN, R. F. Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. Journal of Computational Physics, 174(1), 381-404(2001) [13] HILL, D. J. and PULLIN, D. I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. Journal of Computational Physics, 194(2), 435-450(2004) [14] HU, X. Y., TRITSCHLER, V. K., PIROZZOLI, S., and ADAMS, N. A. Dispersion-dissipation condition for finite difference schemes. arXiv, 1204.5088(2012) https://arxiv.org/abs/1204.5088 [15] FU, L., HU, X. Y., and ADAMS, N. A. A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305, 333-359(2016) [16] FU, L., HU, X. Y., and ADAMS, N. A. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. Journal of Computational Physics, 349, 97-121(2017) [17] DENG, X. and MAO, M. Weighted compact high-order nonlinear schemes for the Euler equations. 13th Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Reston (1997) [18] DENG, X. and ZHANG, H. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 165(1), 22-44(2000) [19] DENG, X., MAO, M., JIANG, Y., and LIU, H. New high-order hybrid cell-edge and cell-node weighted compact nonlinear schemes. 20th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Reston (2011) [20] DENG, X., JIANG, Y., MAO, M., LIU, H., and TU, G. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows. Science China Technological Sciences, 56(10), 2361-2369(2013) [21] DENG, X., JIANG, Y., MAO, M., LIU, H., LI, S., and TU, G. A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law. Computers and Fluids, 116, 29-45(2015) [22] NONOMURA, T. and FUJII, K. Robust explicit formulation of weighted compact nonlinear scheme. Computers and Fluids, 85, 8-18(2013) [23] DENG, X., LIU, X., MAO, M., and ZHANG, H. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow. 17th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics, Reston (2005) [24] NONOMURA, T. and FUJII, K. Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 228(10), 3533-3539(2009) [25] ZHANG, H., ZHANG, F., and XU, C. Towards optimal high-order compact schemes for simulating compressible flows. Applied Mathematics and Computation, 355, 221-237(2019) [26] ZHANG, H., ZHANG, F., LIU, J., MCDONOUGH, J. M., and XU, C. A simple extended compact nonlinear scheme with adaptive dissipation control. Communications in Nonlinear Science and Numerical Simulation, 84, 105191(2020) [27] YAMALEEV, N. K. and CARPENTER, M. H. Third-order energy stable WENO scheme. Journal of Computational Physics, 228(8), 3025-3047(2009) [28] DON, W. S. and BORGES, R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. Journal of Computational Physics, 250, 347-372(2013) [29] JIA, F., GAO, Z., and DON, W. S. A spectral study on the dissipation and dispersion of the WENO schemes. Journal of Scientific Computing, 63(1), 49-77(2015) [30] ZHENG, S., DENG, X., WANG, D., and XIE, C. A parameter-free ε-adaptive algorithm for improving weighted compact nonlinear schemes. International Journal for Numerical Methods in Fluids, 90(5), 247-266(2019) [31] SHU, C. W. and OSHER, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471(1988) [32] ZHUANG, M. and CHEN, R. F. Optimized upwind dispersion-relation-preserving finite difference scheme for computational aeroacoustics. AIAA Journal, 36(11), 2146-2148(1998) [33] LIN, S. Y. and HU, J. J. Parametric study of weighted essentially nonoscillatory schemes for computational aeroacoustics. AIAA Journal, 39(3), 371-379(2001) [34] KIM, J. W. Optimised boundary compact finite difference schemes for computational aeroacoustics. Journal of Computational Physics, 225(1), 995-1019(2007) [35] PIROZZOLI, S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 219(2), 489-497(2006) [36] ZHANG, S. and SHU, C. W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. Journal of Scientific Computing, 31(1-2), 273-305(2007) [37] ZHANG, S., JIANG, S., and SHU, C. W. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. Journal of Scientific Computing, 47(2), 216-238(2011) [38] ZHANG, S., DENG, X., MAO, M., and SHU, C. W. Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes. Acta Mathematicae Applicatae Sinica, English Series, 29(3), 449-464(2013) [39] WANG, D., DENG, X., WANG, G., and DONG, Y. Developing a hybrid flux function suitable for hypersonic flow simulation with high-order methods. International Journal for Numerical Methods in Fluids, 81(5), 309-327(2016) [40] LAX, P. D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7(1), 159-193(1954) [41] SOD, G. A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1), 1-31(1978) [42] TORO, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verlag, Berlin (2009) [43] SHU, C. W. and OSHER, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal of Computational Physics, 83(1), 32-78(1989) [44] TITAREV, V. A. and TORO, E. F. Finite-volume WENO schemes for three-dimensional conservation laws. Journal of Computational Physics, 201(1), 238-260(2004) [45] SHU, C. W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, Berlin/Heidelberg, 325-432(1998) [46] WOODWARD, P. and COLELLA, P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54(1), 115-173(1984) [47] VAN REES, W. M., LEONARD, A., PULLIN, D. I., and KOUMOUTSAKOS, P. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics, 230(8), 2794-2805(2011) [48] ZHANG, H., WANG, G., and ZHANG, F. A multi-resolution weighted compact nonlinear scheme for hyperbolic conservation laws. International Journal of Computational Fluid Dynamics, 34(3), 187-203(2020) |