[1] CRANE, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 21(4), 645-647(1970) [2] ATIF, S. M., HUSSAIN, S., and SAGHEER, M. Effect of viscous dissipation and Joule heating on MHD radiative tangent hyperbolic nanofluid with convective and slip conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(4), 1-17(2019) [3] HSU, J. P., HUNG, S. H., and YU, H. Y. Electrophoresis of a sphere at an arbitrary position in a spherical cavity filled with Carreau fluid. Journal of Colloid and Interface Science, 280(1), 256-263(2004) [4] ANDERSSON, H. I., BECH, K. H., and DANDAPAT, B. S. Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 27(6), 929-936(1992) [5] KHAN, M. R., PAN, K., KHAN, A. U., and ULLAH, N. Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. International Communications in Heat and Mass Transfer, 116, 104707(2020) [6] DOGHNCHI, A. S., WAQAS, M., SEYYED, S. M., HASHEMI-TILEHNOEE, M., and GANJI, D. D. A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity. International Communications in Heat and Mass Transfer, 111, 104430(2020) [7] GAO, T., LI, C., JIA, D., ZHANG, Y., YANG, M., WANG, X., and XU, X. Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. Journal of Cleaner Production, 277, 123328(2020) [8] KHAN, M. R., PAN, K., KHAN, A. U., and NADEEM, S. Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Physica A:Statistical Mechanics and Its Applications, 547, 123959(2020) [9] DU, X., QIU, J., DENG, S., DU, Z., CHENG, X., and WANG, H. Flame-retardant and solid-solid phase change composites based on dopamine-decorated BP nanosheets/polyurethane for efficient solar-to-thermal energy storage. Renewable Energy, 164, 1-10(2021) [10] KHAN, M. R. Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Physica Scripta, 95(10), 105704(2020) [11] VAJRAVELU, K. Viscous flow over a nonlinearly stretching sheet. Applied Mathematics and Computation, 124(3), 281-288(2001) [12] HAYAT, T., MUMTAZ, M., SHAFIQ, A., and ALSAEDI, A. Stratified magnetohydrodynamic flow of tangent hyperbolic nanofluid induced by inclined sheet. Applied Mathematics and Mechanics (English Edition), 38(2), 271-288(2017) https://doi.org/10.1007/s10483-017-2168-9 [13] LIU, I. C., WANG, H. H., and PENG, Y. F. Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chemical Engineering Communications, 200(2), 253-268(2013) [14] ASHRAFI, N. and MOHAMADALI, M. Transient flow and heat transfer of pseudoplastic fluids on a stretching sheet. Applied Mathematics and Computation, 228, 153-161(2014) [15] HAYAT, T., ASAD, S., MUSTAFA, M., and ALSAEDI, A. Boundary layer flow of Carreau fluid over a convectively heated stretching sheet. Applied Mathematics and Computation, 246, 12-22(2014) [16] MEGAHED, A. M. Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity. Applied Mathematics and Mechanics (English Edition), 40(11), 1615-1624(2019) https://doi.org/10.1007/s10483-019-2534-6 [17] MACHIREDDY, G. R. and NARAMGARI, S. Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Engineering Journal, 9(4), 1189-1204(2018) [18] VAJRAVELU, K. and HADJINICOLAOU, A. Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. International Journal of Engineering Science, 35(12-13), 1237-1244(1997) [19] POP, I. and NA, T. Y. A note on MHD flow over a stretching permeable surface. Mechanics Research Communications, 25(3), 263-269(1998) [20] ISHAK, A., NAZAR, R., and POP, I. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat and Mass Transfer, 44(8), 921-927(2008) [21] NADEEM, S., KHAN, M. R., and KHAN, A. U. MHD stagnation point flow of viscous nanofluid over a curved surface. Physica Scripta, 94(11), 115207(2019) [22] NADEEM, S. and KHAN, A. U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet:existence of dual solutions. Physica Scripta, 94(7), 075204(2019) [23] KHAN, M., MALIK, R., and ANJUM, A. Exact solutions of MHD second Stokes flow of generalized Burgers fluid. Applied Mathematics and Mechanics (English Edition), 36(2), 211-224(2015) https://doi.org/10.1007/s10483-015-1906-7 [24] ALI, F. M., NAZAR, R., ARIFIN, N. M., and POP, I. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Applied Mathematics and Mechanics (English Edition), 32(4), 409-418(2011) https://doi.org/10.1007/s10483-011-1426-6 [25] ZHANG, X. and ZHANG, Y. Heat transfer and flow characteristics of Fe3O4-water nanofluids under magnetic excitation. International Journal of Thermal Sciences, 163, 106826(2021) [26] UDDIN, I., ULLAH, I., ALI, R., KHAN, I., and NISAR, K. S. Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl-Eyring nanofluids in the presence of activation energy and Joule heating. Journal of Thermal Analysis and Calorimetry, 145, 495-505(2021) [27] GAO, T., LI, C., ZHANG, Y., YANG, M., JIA, D., JIN, T., and LI, R. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 131, 51-63(2019) [28] ZHU, J., ZHENG, L. C., and ZHANG, Z. G. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet. Applied Mathematics and Mechanics (English Edition), 31(4), 439-448(2010) https://doi.org/10.1007/s10483-010-0404-z [29] SADEGHI, M. S., TAYEBI, T., DOGONCHI, A. S., NAYAK, M. K., and WAQAS, M. Analysis of thermal behavior of magnetic buoyancy-driven flow in ferrofluid-filled wavy enclosure furnished with two circular cylinders. International Communications in Heat and Mass Transfer, 120, 104951(2021) [30] ZHANG, X. and ZHANG, Y. Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field. International Journal of Thermal Sciences, 164, 106897(2021) [31] RAUF, A., ABBAS, Z., and SHEHZAD, S. A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Applied Mathematics and Mechanics (English Edition), 40(6), 837-850(2019) https://doi.org/10.1007/s10483-019-2488-9 [32] ZHANG, Y., LI, C., JIA, D., ZHANG, D., and ZHANG, X. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. International Journal of Machine Tools and Manufacture, 99, 19-33(2015) [33] KHAN, M. R., LI, M., MAO, S., ALI, R., and KHAN, S. Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Scientific Reports, 11(1), 1-14(2021) [34] ZHU, J., ZHENG, L., ZHENG, L., and ZHANG, X. Second-order slip MHD flow and heat transfer of nanofluids with thermal radiation and chemical reaction. Applied Mathematics and Mechanics (English Edition), 36(9), 1131-1146(2015) https://doi.org/10.1007/s10483-015-1977-6 [35] BEJAN, A. A study of entropy generation in fundamental convective heat transfer. Journal Heat Transfer, 101(4), 718-725(1979) [36] BEJAN, A. and KESTIN, J. Entropy generation through heat and fluid flow. Journal of Applied Mechanics, 50, 475(1983) [37] BHATTI, M. M., SHEIKHOLESLAMI, M., SHAHID, A., HASSAN, M., and ABBAS, T. Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 570, 368-376(2019) [38] ELLAHI, R., ALAMRI, S. Z., BASIT, A., and MAJEED, A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4), 476-482(2018) [39] KHAN, M. I., KHAN, T. A., QAYYUM, S., HAYAT, T., KHAN, M. I., and ALSAEDI, A. Entropy generation optimization and activation energy in nonlinear mixed convection flow of a tangent hyperbolic nanofluid. The European Physical Journal Plus, 133(8), 1-20(2018) [40] ULLAH, I., ALI, R., KHAN, I., and NISAR, K. S. Insight into kerosene conveying CNTs and Fe3O4 nanoparticles through a porous medium:significance of Coriolis force and entropy generation. Physica Scripta, 96(5), 055705(2021) [41] HAYAT, T., YAQOOB, R., QAYYUM, S., and ALSAEDI, A. Entropy generation optimization in nanofluid flow by variable thicked sheet. Physica A:Statistical Mechanics and Its Applications, 551, 124022(2020) [42] HAYAT, T., KHAN, M. I., WAQAS, M., and ALSAEDI, A. Stagnation point flow of hyperbolic tangent fluid with Soret-Dufour effects. Results in Physics, 7, 2711-2717(2017) |