[1] MOEENDARBARY, E., NG, T. Y., and ZANGENEH, M. Dissipative particle dynamics: introduction, methodology and complex fluid applications— a review. International Journal of Applied Mechanics, 1(4), 737-763(2009) [2] HOOGERBRUGGE, P. and KOELMAN, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19(3), 155(1992) [3] ESPANOL, P. and WARREN, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30(4), 191(1995) [4] ESPANOL, P. Hydrodynamics from dissipative particle dynamics. Physical Review E, 52(2), 1734 (1995) [5] MARSH, C. A., BACKX, G., and ERNST, M. Static and dynamic properties of dissipative particle dynamics. Physical Review E, 56(2), 1676(1997) [6] GROOT, R. D. and WARREN, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. The Journal of Chemical Physics, 107(11), 4423-4435(1997) [7] LI, X., TANG, Y. H., LIANG, H., and KARNIADAKIS,G. Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems. Chemical Communications, 50(61), 8306-8308(2014) [8] QI, X. J., WANG, S., MA, S. H., HAN, K. Q., and LI, X. J. Quantitative prediction of flow dynamics and mechanical retention of surface-altered red blood cells through a splenic slit. Physics of Fluids, 33(5), 051902(2021) [9] LI, X., PENG, Z., LEI, H., and KARNIADAKIS, G. E. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2021), 20130389(2014) [10] XIAO, L., LIU, Y., CHEN, S., and FU, B. M. Numerical simulation of a single cell passing through a narrow slit. Biomechanics and Mmodeling in Mechanobiology, 15(6), 1655-1667(2016) [11] LI, Z., YAZDANI, A., TARTAKOVSKY, A., and KARNIADAKIS, G. E. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. The Journal of Chemical Physics, 143(1), 014101(2015) [12] ESPANOL, P. and REVENGA, M. Smoothed dissipative particle dynamics. Physical Review E, 67(2), 026705(2003) [13] LI, G., YE, T., WANG, S., LI, X., and HAQ, R. U. Numerical design of a highly e–cient microfluidic chip for blood plasma separation. Physics of Fluids, 32(3), 031903(2020) [14] WARREN, P. B. Vapor-liquid coexistence in many-body dissipative particle dynamics. Physical Review E, 68(6), 066702(2003) [15] ESPANOL, P. Dissipative particle dynamics with energy conservation. Europhysics Letters, 40(6), 631(1997) [16] LI, Z., HU, G. H., WANG, Z. L., MA, Y. B., and ZHOU, Z. W. Three dimensional flow structures in a moving droplet on substrate: a dissipative particle dynamics study. Physics of Fluids, 25(7), 072103(2013) [17] AVALOS, J. B. and MACKIE, A. Dissipative particle dynamics with energy conservation. Europhysics Letters, 40(2), 141(1997) [18] YAMADA, T., JOHANSSON, E. O., SUNDÉN, B., and YUAN, J. L. Dissipative particle dynamics simulations of water droplet flows in a submicron parallel-plate channel for different temperature and surface-wetting conditions. Numerical Heat Transfer, Part A: Applications, 70(6), 595-612(2016) [19] WANG, L. W., DAI, J. Z., HAO, P. F., HE, F., and ZHANG, X. W. Mesoscopic dynamical model of ice crystal nucleation leading to droplet freezing. ACS Omega, 5(7), 3322-3332(2020) [20] ZHANG, K., LI, J., CHEN, S., and LIU, Y. Temperature-dependent properties of liquid-vapour coexistence system with many-body dissipative particle dynamics with energy conservation (2020) arXiv:2007.09899v1 [21] LI, Z., TANG, Y. H., LEI, H., CASWELL, B., and KARNIADAKIS, G. E. Energy-conserving dissipative particle dynamics with temperature-dependent properties. Journal of Computational Physics, 265, 113-127(2014) [22] CHEN, S., LIU, Y., KHOO, B. C., FAN, X. J., and FAN, J. T. Mesoscopic simulation of binary immiscible fluids flow in a square microchannel with hydrophobic surfaces. Computer Modeling in Engineering and Sciences, 19(3), 181-196(2007) [23] IRVING, J. and KIRKWOOD, J. G. The statistical mechanical theory of transport processes, IV: the equations of hydrodynamics. The Journal of Chemical Physics, 18(6), 817-829(1950) [24] GHOUFI, A. and MALFREYT, P. Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods. Physical Review E: Statistical Nonlinear and Soft Matter Physics, 82(1-2), 016706(2010) [25] SEVENO, D., BLAKE, T. D., and DE CONINCK, J. Young’s equation at the nanoscale. Physical Review Letters, 111(9), 096101(2013) [26] JIANG, H., MÜLLER-PLATHE, F., and PANAGIOTOPOULOS, A. Z. Contact angles from Young’s equation in molecular dynamics simulations. The Journal of Chemical Physics, 147(8), 084708(2017) [27] LEROY, F. and MÜLLER-PLATHE, F. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. The Journal of Chemical Physics, 133(4), 044110(2010) [28] BENNETT, C. H. E–cient estimation of free energy differences from Monte Carlo data. Journal of Computational Physics, 22(2), 245-268(1976) [29] YOUNG, T. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87(1805) [30] HOLZ, M., HEIL, S. R., and SACCO, A. Temperature-dependent self-diffusion coe–cients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Physical Chemistry Chemical Physics, 2(20), 4740-4742(2000) [31] BERGMAN, T. L., LAVINE, A. S., and INCROPERA, F. P. Introduction to Heat Transfer, John Wiley & Sons, New York (2011) [32] BÖCKH, P. and WETZEL, T. Heat Transfer: Basics and Practice, Springer Science & Business Media, Berlin (2011) [33] WARREN, P. B. No-go theorem in many-body dissipative particle dynamics. Physical Review E, 87(4), 045303(2013) |