Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (7): 1001-1026.doi: https://doi.org/10.1007/s10483-022-2863-6
Bin ZHANG1, Hongsheng LIU1, Shengxi ZHOU2, Jun GAO1
收稿日期:
2021-10-04
修回日期:
2021-11-25
出版日期:
2022-07-01
发布日期:
2022-06-30
通讯作者:
Shengxi ZHOU, E-mail: zhoushengxi@nwpu.edu.cn
基金资助:
Bin ZHANG1, Hongsheng LIU1, Shengxi ZHOU2, Jun GAO1
Received:
2021-10-04
Revised:
2021-11-25
Online:
2022-07-01
Published:
2022-06-30
Contact:
Shengxi ZHOU, E-mail: zhoushengxi@nwpu.edu.cn
Supported by:
摘要: Piezoelectric energy harvesting is considered as an ideal power resource for low-power consumption gadgets in vibrational environments. The energy extraction efficiency depends highly on the interface circuit, and should be highly improved to meet the power requirements. The nonlinear interface circuits in discrete components have been extensively explored and developed with the advantages of easy implementation, stable operation, high efficiency, and low cost. This paper reviews the state-of-the-art progress of nonlinear piezoelectric energy harvesting interface circuits in discrete components. First, the working principles and the advantages/disadvantages of four classical interface circuits are described. Then, the improved circuits based on the four typical circuits and other types of circuits are introduced in detail, and the advantages/disadvantages, output power, efficiency, energy consumption, and practicability of these circuits are analyzed. Finally, the future development trends of nonlinear piezoelectric energy harvesting circuits, e.g., self-powered extraction, low-power consumption, and broadband characteristic, are predicted.
中图分类号:
Bin ZHANG, Hongsheng LIU, Shengxi ZHOU, Jun GAO. A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1001-1026.
Bin ZHANG, Hongsheng LIU, Shengxi ZHOU, Jun GAO. A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1001-1026.
[1] WHELAN, M. J., GANGONE, M. V., and JANOYAN, K. D. Highway bridge assessment using an adaptive real-time wireless sensor network. IEEE Sensors Journal, 9, 1405-1413(2009) [2] JOUHARI, M., IBRAHIMI, K., TEMBINE, H., and BEN-OTHMAN, J. Underwater wireless sensor networks:a survey on enabling technologies, localization protocols, and internet of underwater things. IEEE Access, 7, 96879-96899(2019) [3] SUN, J. Z. and HUANG, Q. Wireless sensor network based bridge health monitoring system for long-span bridges. Advanced Materials Research, 905, 575-579(2014) [4] ZHENG, G. S., PFERSICH, S., ELDRIDGE, A., ZHOU, J. S., TIAN, D. X., and LEUNG, V. C. M. Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring. IEEE/CAA Journal of AutomaticaSinica, 6, 64-74(2019) [5] MA, D. X., MA, J., XU, P. M., and PANG, Y. The application research progress of wireless sensor networks. Applied Mechanics and Materials, 475-476, 520-523(2014) [6] RAMYA, R., SARAVANAKUMAR, G., and RAVI, S. Energy Harvesting in Wireless Sensor Networks, Springer India, Delhi (2016) [7] DU, S., JIA, Y., and SESHIA, A. A. An efficient inductorless dynamically configured interface circuit for piezoelectric vibration energy harvesting. IEEE Transactions on Power Electronics, 32, 3595-3609(2016) [8] WANG, X., XUE, C., and LI, H. Nonlinear primary resonance analysis for a coupled thermopiezoelectric-mechanical model of piezoelectric rectangular thin plates. Applied Mathematics and Mechanics (English Edition), 40(8), 1155-1168(2019) https://doi.org/10.1007/s10483-019-2510-6 [9] JUNG, H. J., SONG, Y., HONG, S. K., YANG, C. H., HWANG, S. J., JEONG, S. Y., and SUNG, T. H. Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators A:Physical, 222, 314-321(2015) [10] LI, Z. J., LIU, Y., YIN, P. L., PENG, Y., LUO, J., XIE, S. R., and PU, H. Y. Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting. International Journal of Mechanical Sciences, 198, 106363(2021) [11] WANG, L., ZHAO, L. B., LUO, G. X., ZHAO, Y. H., YANG, P., JIANG, Z. D., and MAEDA, R. System level design of wireless sensor node powered by piezoelectric vibration energy harvesting. Sensors and Actuators A:Physical, 310, 112039(2020) [12] HUANG, D. M., CHEN, J. Y., ZHOU, S. X., FANG, X. L., and LI, W. Response regimes of nonlinear energy harvesters with a resistor-inductor resonant circuit by complexification-averaging method. Science China Technological Sciences, 64, 1212-1227(2021) [13] YANG, T., ZHOU, S. X., FANG, S. T., QIN, W. Y., and INMAN, D. J. Nonlinear vibration energy harvesting and vibration suppression technologies:designs, analysis, and applications. Applied Physics Reviews, 8, 031317(2021) [14] MIAO, G., FANG, S. T., WANG, S., and ZHOU, S. X. A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism. Applied Energy, 305, 117838(2022) [15] WANG, H. R., HU, H. P., YANG, J. S., and HU, Y. T. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester. Applied Mathematics and Mechanics (English Edition), 34(5), 589-596(2013) https://doi.org/10.1007/s10483-013-1693-x [16] CHEW, Z. J., RUAN, T., and ZHU, M. Power management circuit for wireless sensor nodes powered by energy harvesting:on the synergy of harvester and load. IEEE Transactions on Power Electronics, 34, 8671-8681(2018) [17] DUAN, X. J., CAO, D. X., LI, X. G., and SHEN, Y. J. Design and dynamic analysis of integrated architecture for vibration energy harvesting including piezoelectric frame and mechanical amplifier. Applied Mathematics and Mechanics (English Edition), 42(6), 755-770(2021) https://doi.org/10.1007/s10483-021-2741-8 [18] LAN, J. F., ZHENG, L., AN, Z. Q., HOU, D. S., SUN, D. P., and ZHU, J. L. High power density and flexible self-powered piezoelectric nanogenerator based on solution crystallization. Journal of Applied Polymer Science, 138, 50896(2021) [19] ZHANG, B., LI, D. Z., LI, Y. R., DUCHARNE, B., and GAO, J. Double peak derived from piezoelectric coefficient nonlinearity and proposal for self-powered systems. Transactions of Nanjing University of Aeronautics and Astronautics, 35, 109-115(2018) [20] MAHALE, B., KUMAR, N., PANDEY, R., and RANJAN, R. High power density lowlead-piezoceramic-polymer composite energy harvester. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 789-796(2019) [21] PARK, S., KIM, H., KIM, J., LEE, T. H., and CHO, S. G. Taguchi design of PZT-based piezoelectric cantilever beam with maximum and robust voltage for wide frequency range. Journal of Electronic Materials, 48, 6881-6889(2019) [22] PENG, Y., XU, Z. B., WANG, M., LI, Z. J., PENG, J. L., LUO, J., XIE, S. R., PU, H. Y., and YANG, Z. B. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy, 172, 551-563(2021) [23] RUI, X. B., ZHANG, Y., ZENG, Z. M., YUE, G. X., HUANG, X. J., and LI, J. B. Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion. Mechanical Systems and Signal Processing, 149, 107307(2021) [24] CAO, D. X., XIA, W., and HU, W. H. Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 40(12), 1777-1790(2019) https://doi.org/10.1007/s10483-019-2542-5 [25] WU, Y. P., LI, S., FAN, K. Q., JI, H., and QIU, J. H. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mechanical Systems and Signal Processing, 162, 108038(2022) [26] ZHOU, S. X., CAO, J. Y., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86, 1599-1611(2016) [27] LU, Z. Q., SHAO, D., FANG, Z. W., DING, H., and CHEN, L. Q. Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate. Journal of Vibration and Control, 26, 779-789(2020) [28] WANG, C., LAI, S. K., WANG, Z. C., WANG, J. M., YANG, W., and NI, Y. Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 64, 103943(2019) [29] WANG, C., ZHANG, Q. C., and WANG, W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. Journal of Sound and Vibration, 399, 169-181(2017) [30] YANG, Y. X., SUN, L., ZHANG, Y., and SU, Y. K. Efficient and broadband four-wave mixing in a compact silicon subwavelength nanohole waveguide. Advanced Optical Materials, 7, 1900810(2019) [31] KUANG, Y., HIDE, R., and ZHU, M. L. Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance. Applied Energy, 255, 113822(2019) [32] ZHOU, S. X., CAO, J. Y., ERTURK, A., and LIN, J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 102, 173901(2013) [33] SONG, R. J., SHAN, X. B., LV, F. C., LI, J. Z., and XIE, T. A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water. Applied Sciences, 5, 1942-1954(2015) [34] JEYASEELAN, A. A. and DUTTA, S. Improvement in piezoelectric properties of PLZT thin film with large cation doping at A-site. Journal of Alloys and Compounds, 826, 153956(2020) [35] YAN, X. H., LI, G., WANG, Z. Y., YU, Z. C., WANG, K. Y., and WU, Y. C. Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy, 77, 105180(2020) [36] SUKUMARAN, S., CHATBOURI, S., ROUXEL, D., TISSERAND, E., THIEBAUD, F., and BEN-ZINEB, T. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. Journal of Intelligent Material Systems and Structures, 32, 746-780(2021) [19] ZHANG, B., LI, D. Z., LI, Y. R., DUCHARNE, B., and GAO, J. Double peak derived from piezoelectric coefficient nonlinearity and proposal for self-powered systems. Transactions of Nanjing University of Aeronautics and Astronautics, 35, 109-115(2018) [20] MAHALE, B., KUMAR, N., PANDEY, R., and RANJAN, R. High power density lowlead-piezoceramic-polymer composite energy harvester. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 789-796(2019) [21] PARK, S., KIM, H., KIM, J., LEE, T. H., and CHO, S. G. Taguchi design of PZT-based piezoelectric cantilever beam with maximum and robust voltage for wide frequency range. Journal of Electronic Materials, 48, 6881-6889(2019) [22] PENG, Y., XU, Z. B., WANG, M., LI, Z. J., PENG, J. L., LUO, J., XIE, S. R., PU, H. Y., and YANG, Z. B. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy, 172, 551-563(2021) [23] RUI, X. B., ZHANG, Y., ZENG, Z. M., YUE, G. X., HUANG, X. J., and LI, J. B. Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion. Mechanical Systems and Signal Processing, 149, 107307(2021) [24] CAO, D. X., XIA, W., and HU, W. H. Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam. Applied Mathematics and Mechanics (English Edition), 40(12), 1777-1790(2019) https://doi.org/10.1007/s10483-019-2542-5 [25] WU, Y. P., LI, S., FAN, K. Q., JI, H., and QIU, J. H. Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mechanical Systems and Signal Processing, 162, 108038(2022) [26] ZHOU, S. X., CAO, J. Y., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86, 1599-1611(2016) [27] LU, Z. Q., SHAO, D., FANG, Z. W., DING, H., and CHEN, L. Q. Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate. Journal of Vibration and Control, 26, 779-789(2020) [28] WANG, C., LAI, S. K., WANG, Z. C., WANG, J. M., YANG, W., and NI, Y. Q. A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 64, 103943(2019) [29] WANG, C., ZHANG, Q. C., and WANG, W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. Journal of Sound and Vibration, 399, 169-181(2017) [30] YANG, Y. X., SUN, L., ZHANG, Y., and SU, Y. K. Efficient and broadband four-wave mixing in a compact silicon subwavelength nanohole waveguide. Advanced Optical Materials, 7, 1900810(2019) [31] KUANG, Y., HIDE, R., and ZHU, M. L. Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance. Applied Energy, 255, 113822(2019) [32] ZHOU, S. X., CAO, J. Y., ERTURK, A., and LIN, J. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 102, 173901(2013) [33] SONG, R. J., SHAN, X. B., LV, F. C., LI, J. Z., and XIE, T. A novel piezoelectric energy harvester using the macro fiber composite cantilever with a bicylinder in water. Applied Sciences, 5, 1942-1954(2015) [34] JEYASEELAN, A. A. and DUTTA, S. Improvement in piezoelectric properties of PLZT thin film with large cation doping at A-site. Journal of Alloys and Compounds, 826, 153956(2020) [35] YAN, X. H., LI, G., WANG, Z. Y., YU, Z. C., WANG, K. Y., and WU, Y. C. Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy, 77, 105180(2020) [36] SUKUMARAN, S., CHATBOURI, S., ROUXEL, D., TISSERAND, E., THIEBAUD, F., and BEN-ZINEB, T. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. Journal of Intelligent Material Systems and Structures, 32, 746-780(2021) A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components 1023 [37] KLIMIEC, E., KACZMAREK, H., KROLIKOWSKI, B., and KÓ LASZCZYNSKI, G. Cellulaŕ polyolefin composites as piezoelectric materials:properties and applications. Polymers, 12, 2698(2020) [38] KAMENSHCHIKOV, M. V., SOLNYSHKIN, A. V., and PRONIN, I. P. Dielectric response of capacitor structures based on PZT annealed at different temperatures. Physics Letters A, 380, 4003-4007(2016) [39] SAMANTA, S., SANKARANARAYANAN, V., and SETHUPATHI, K. Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum, 156, 456-462(2018) [40] ZHANG, S., LIN, X. J., LIU, H., YUAN, Z., HUAN, Y., YUAN, X., HUANG, S. F., and CHENG, X. High-performance flexible piezoelectric nanogenerator based on necklace-like PZT particle chains. International Journal of Energy Research, 45, 6213-6226(2021) [41] HUAN, Y., ZHANG, X. S., SONG, J. N., ZHAO, Y., WEI, T., ZHANG, G. G., and WANG, X. H. High-performance piezoelectric composite nanogenerator based on Ag/(K, Na) NbO3 heterostructure. Nano Energy, 50, 62-69(2018) [42] SONG, H. C., KIM, H. C., KANG, C. Y., KIM, H. J., YOON, S. J., and JEONG, D. Y. Multilayer piezoelectric energy scavenger for large current generation. Journal of Electroceramics, 23, 301(2009) [43] NADAUD, K., POULIN-VITTRANT, G., and ALQUIER, D. Influence of topology and diode characteristics of AC-DC converters for low power piezoelectric energy harvesting. Sensors and Actuators A:Physical, 330, 112901(2021) [44] LIANG, J. and LIAO, W. H. Impedance modeling and analysis for piezoelectric energy harvesting systems. IEEE/ASME Transactions on Mechatronics, 17, 1145-1157(2011) [45] LI, Z. Y., TANG, L. H., YANG, W. Q., ZHAO, R. D., LIU, K. F., and MACE, B. Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface. Nano Energy, 87, 106179(2021) [46] GIULIANO, A. and ZHU, M. L. A passive impedance matching interface using a PC permalloy coil for practically enhanced piezoelectric energy harvester performance at low frequency. IEEE Sensors Journal, 14, 2773-2781(2014) [47] PRIYA, S. Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics Letters, 87, 184101(2005) [48] YAN, B., ZHOU, S. X., and LITAK, G. Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. International Journal of Bifurcation and Chaos, 28, 1850092(2018) [49] PEIGNEY, M. and SIEGERT, D. Piezoelectric energy harvesting from traffic-induced bridge vibrations. Smart Materials and Structures, 22, 095019(2013) [50] WANG, J. H., ZHAO, B., LIAO, W. H., and LIANG, J. R. New insight into piezoelectric energy harvesting with mechanical and electrical nonlinearities. Smart Materials and Structures, 29, 04LT01(2020) [51] OTTMAN, G. K., HOFMANN, H. F., BHATT, A. C., and LESIEUTRE, G. A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 17, 669-676(2002) [52] LEFEUVRE, E., BADEL, A., RICHARD, C., and GUYOMAR, D. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. Journal of Intelligent Material Systems and Structures, 16, 865-876(2005) [53] LALLART, M. and GUYOMAR, D. An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials and Structures, 17, 035030(2008) [54] TAYLOR, G. W., BURNS, J. R., KAMMANN, S. A., POWERS, W. B., and WELSH, T. R. The energy harvesting eel:a small subsurface ocean/river power generator. IEEE Journal of Oceanic Engineering, 26, 539-547(2001) [55] SHEN, H., QIU, J. H., JI, H. L., ZHU, K. J., BALSI, M., GIORGIO, I., and DELL'ISOLA, F. A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sensors and Actuators A:Physical, 161, 245-255(2010) [56] GUYOMAR, D., BADEL, A., LEFEUVRE, E., and RICHARD, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-595(2005) [57] RICHARDS, C. D., ANDERSON, M. J., BAHR, D. F., and RICHARDS, R. F. Efficiency of energy conversion for devices containing a piezoelectric component. Journal of Micromechanics and Microengineering, 14, 717-721(2004) [58] ROUNDY, S. and WRIGHT, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and structures, 13, 1131-1142(2004) [59] AJITSARIA, J., CHOE, S. Y., SHEN, D., and KIM, D. J. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Materials and Structures, 16, 447-454(2007) [60] ZHANG, B., LIU, H. S., LI, D. Z., LIANG, J. H., and GAO, J. Analytical modeling and validation of a preloaded piezoceramic current output. Micromachines, 12, 353(2021) [61] RAMADASS, Y. and CHANDRAKASAN, A. P. An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor. International Solid-State Circuits Conference, 45, 189-204(2009) [62] SHU, Y. C. and LIEN, I. C. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16, 2429-2438(2006) [63] SHU, Y. C., LIEN, I. C., and WU, W. J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16, 2253-2264(2007) [64] LEFEUVRE, E., BADEL, A., BENAYAD, A., LEBRUN, L., RICHARD, C., and GUYOMAR, D. A comparison between several approaches of piezoelectric energy harvesting. Journal De Physique IV, 128, 177-186(2005) [65] ZHU, L. Y., CHEN, R. W., and LIU, X. J. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 23, 441-451(2012) [66] NECHIBVUTE, A. and CHAWANDA, P. L. A. Applicability of self-powered synchronized electric charge extraction (SECE) circuit for piezoelectric energy harvesting. International Journal of Engineering and Technology, 4, 212608868(2014) [67] LALLART, M., ZHOU, S. X., YANG, Z. C., YAN, L. J., LI, K., and CHEN, Y. Coupling mechanical and electrical nonlinearities:the effect of synchronized discharging on tristable energy harvesters. Applied Energy, 266, 114516(2020) [68] FERRARI, M., BAU, M., CERINI, F., and FERRARI, V. Impact-enhanced multi-beam piezo-electric converter for energy harvesting in autonomous sensors. Procedia Engineering, 47, 418-421(2012) [69] PAN, J. N., QIN, W. Y., YANG, Y. F., and YANG, Y. W. A collision impact based energy harvester using piezoelectric polyline beams with electret coupling. Journal of Physics D:Applied Physics, 54, 225502(2021) [70] HE, X. F., TEH, K. S., LI, S. Y., DONG, L. X., and JIANG, S. L. Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sensors and Actuators A:Physical, 259, 171-179(2017) [71] PANYAM, M., MASANA, R., and DAQAQ, M. F. On approximating the effective bandwidth of bi-stable energy harvesters. International Journal of Non-Linear Mechanics, 67, 153-163(2014) [72] PAN, D. K., LI, Y. Q., and DAI, F. H. The influence of lay-up design on the performance of bi-stable piezoelectric energy harvester. Composite Structures, 161, 227-236(2017) [73] PAN, D. K. and DAI, F. H. Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Conversion and Management, 169, 149-160(2018) [74] TANG, Q. C., YANG, Y. L., and LI, X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Materials and Structures, 20, 125011(2011) [75] QIAN, F., HAJJ, M. R., and ZUO, L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Conversion and Management, 222, 113174(2020) [56] GUYOMAR, D., BADEL, A., LEFEUVRE, E., and RICHARD, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 584-595(2005) [57] RICHARDS, C. D., ANDERSON, M. J., BAHR, D. F., and RICHARDS, R. F. Efficiency of energy conversion for devices containing a piezoelectric component. Journal of Micromechanics and Microengineering, 14, 717-721(2004) [58] ROUNDY, S. and WRIGHT, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and structures, 13, 1131-1142(2004) [59] AJITSARIA, J., CHOE, S. Y., SHEN, D., and KIM, D. J. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Materials and Structures, 16, 447-454(2007) [60] ZHANG, B., LIU, H. S., LI, D. Z., LIANG, J. H., and GAO, J. Analytical modeling and validation of a preloaded piezoceramic current output. Micromachines, 12, 353(2021) [61] RAMADASS, Y. and CHANDRAKASAN, A. P. An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor. International Solid-State Circuits Conference, 45, 189-204(2009) [62] SHU, Y. C. and LIEN, I. C. Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering, 16, 2429-2438(2006) [63] SHU, Y. C., LIEN, I. C., and WU, W. J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 16, 2253-2264(2007) [64] LEFEUVRE, E., BADEL, A., BENAYAD, A., LEBRUN, L., RICHARD, C., and GUYOMAR, D. A comparison between several approaches of piezoelectric energy harvesting. Journal De Physique IV, 128, 177-186(2005) [65] ZHU, L. Y., CHEN, R. W., and LIU, X. J. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 23, 441-451(2012) [66] NECHIBVUTE, A. and CHAWANDA, P. L. A. Applicability of self-powered synchronized electric charge extraction (SECE) circuit for piezoelectric energy harvesting. International Journal of Engineering and Technology, 4, 212608868(2014) [67] LALLART, M., ZHOU, S. X., YANG, Z. C., YAN, L. J., LI, K., and CHEN, Y. Coupling mechanical and electrical nonlinearities:the effect of synchronized discharging on tristable energy harvesters. Applied Energy, 266, 114516(2020) [68] FERRARI, M., BAU, M., CERINI, F., and FERRARI, V. Impact-enhanced multi-beam piezo-electric converter for energy harvesting in autonomous sensors. Procedia Engineering, 47, 418-421(2012) [69] PAN, J. N., QIN, W. Y., YANG, Y. F., and YANG, Y. W. A collision impact based energy harvester using piezoelectric polyline beams with electret coupling. Journal of Physics D:Applied Physics, 54, 225502(2021) [70] HE, X. F., TEH, K. S., LI, S. Y., DONG, L. X., and JIANG, S. L. Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sensors and Actuators A:Physical, 259, 171-179(2017) [71] PANYAM, M., MASANA, R., and DAQAQ, M. F. On approximating the effective bandwidth of bi-stable energy harvesters. International Journal of Non-Linear Mechanics, 67, 153-163(2014) [72] PAN, D. K., LI, Y. Q., and DAI, F. H. The influence of lay-up design on the performance of bi-stable piezoelectric energy harvester. Composite Structures, 161, 227-236(2017) [73] PAN, D. K. and DAI, F. H. Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate. Energy Conversion and Management, 169, 149-160(2018) [74] TANG, Q. C., YANG, Y. L., and LI, X. Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Materials and Structures, 20, 125011(2011) [75] QIAN, F., HAJJ, M. R., and ZUO, L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Conversion and Management, 222, 113174(2020) A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components 1025 [76] ZHOU, S. X., CAO, J. Y., INMAN, D. J., LIN, J., LIU, S. S., and WANG, Z. Z. Broadband tristable energy harvester:modeling and experiment verification. Applied Energy, 133, 33-39(2014) [77] ZHOU, S. X., CAO, J. Y., INMAN, D. J., LIN, J., and LI, D. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. Journal of Sound and Vibration, 373, 223-235(2016) [78] ZHOU, S. X. and ZUO, L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271-284(2018) [79] MA, X. Q., LI, H. T., ZHOU, S. X., YANG, Z. C., and LITAK, G. Characterizing nonlinear characteristics of asymmetric tristable energy harvesters. Mechanical Systems and Signal Processing, 168, 108612(2022) [80] WU, Y. P., BADEL, A., FORMOSA, F., LIU, W. Q., and AGBOSSOU, A. Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches. Journal of Intelligent Material Systems and Structures, 25, 1658-1663(2014) [81] ZHU, L. Y., CHEN, R. W., and LIU, X. J. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 23, 441-451(2012) [82] XIA, H. K., XIA, Y. S., YE, Y. D., SHI, G., WANG, X. D., and CHEN, Z. D. A self-powered PSSHI and SECE hybrid rectifier for piezoelectric energy harvesting. IEICE Electronics Express, 17, 20200269(2020) [83] ELTAMALY, A. M. and ADDOWEESH, K. E. A novel self-power SSHI circuit for piezoelectric energy harvester. IEEE Transactions on Power Electronics, 32, 7663-7673(2016) [84] LIANG, J. and LIAO, W. H. Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems. IEEE Transactions on Industrial Electronics, 59, 1950-1960(2011) [85] CHEN, Z. S., HE, J., LIU, J. H., and XIONG, Y. P. Switching delay in self-powered nonlinear piezoelectric vibration energy harvesting circuit:mechanisms, effects, and solutions. IEEE Transactions on Power Electronics, 34, 2427-2440(2018) [86] DU, S. and SESHIA, A. A. An inductorless bias-flip rectifier for piezoelectric energy harvesting. IEEE Journal of Solid-State Circuits, 52, 2746-2757(2017) [87] WU, L., GUO, C. R., CHEN, Z. S., and HA, D. S. An SSHC circuit integrated with an active rectifier for piezoelectric energy harvesting. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems, Dallas (2019) [88] YUE, X. and DU, S. Voltage flip efficiency optimization of SSHC rectifiers for piezoelectric energy harvesting. 2021 IEEE International Symposium on Circuits and Systems, Daegu (2021) [89] WANG, H. T., SHI, D. Y., and ZHENG, S. J. Synchronous charge extraction and voltage inversion (SCEVI):a new efficient vibration-based energy harvesting scheme. Journal of Vibroengineering, 17, 1037-1050(2015) [90] LALLART, M., WU, W. J., HSIEH, Y., and YAN, L. Synchronous inversion and charge extraction (SICE):a hybrid switching interface for efficient vibrational energy harvesting. Smart Materials and Structures, 26, 115012(2017) [91] LALLART, M., GARBUIO, L., PETIT, L., RICHARD, C., and GUYOMAR, D. Double synchronized switch harvesting (DSSH):a new energy harvesting scheme for efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55, 2119-2130(2008) [92] XIA, H. K., XIA, Y. S., SHI, G., YE, Y. D., WANG, X. D., CHEN, Z. D., and JIANG, Q. A self-powered S-SSHI and SECE hybrid rectifier for PE energy harvesters:analysis and experiment. IEEE Transactions on Power Electronics, 36, 1680-1692(2020) [93] OTTMAN, G. K., HOFMANN, H. F., and LESIEUTRE, G. A. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18, 696-703(2003) [94] WAHAB, S. A., BHUYAN, M. S., SAMPE, J., and ALI, S. H. M. Parametric analysis of boost converter for energy harvesting using piezoelectric for micro devices. 2014 IEEE International Conference on Semiconductor Electronics, Pittsburgh (2014) [95] TABESH, A. and FRECHETTE, L. G. A low-power stand-alone adaptive circuit for harvestinǵ energy from a piezoelectric micropower generator. IEEE Transactions on Industrial Electronics, 57, 840-849(2009) [96] KUSHINO, Y. and KOIZUMI, H. Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor. 2014 IEEE Energy Conversion Congress and Exposition, Pittsburgh (2014) [97] LIANG, J. R. and LIAO, W. H. Piezoelectric energy harvesting and dissipation on structural damping. Journal of Intelligent Material Systems and Structures, 20, 515-527(2009) [98] LALLART, M. and GUYOMAR, D. Piezoelectric conversion and energy harvesting enhancement by initial energy injection. Applied Physics Letters, 97, 014104(2010) [99] BECKER, P., HYMON, E., FOLKMER, B., and MANOLI, Y. High efficiency piezoelectric energy harvester with synchronized switching interface circuit. Sensors and Actuators A:Physical, 202, 155-161(2013) [100] LIANG, J. R. Synchronized bias-flip interface circuits for piezoelectric energy harvesting enhancement:a general model and prospects. Journal of Intelligent Material Systems and Structures, 28, 339-356(2017) [101] LIANG, J. R., ZHAO, Y. H., and ZHAO, K. Synchronized triple bias-flip interface circuit for piezoelectric energy harvesting enhancement. IEEE Transactions on Power Electronics, 34, 275-286(2018) [102] DONG, Y., LI, D. Z., DUCHARNE, B., WANG, X. H., GAO, J., and ZHANG, B. Impedance analysis and optimization of self-powered interface circuit for wireless sensor nodes application. Shock and Vibration, 2018, 8475896(2018) [103] LIU, H. C., ZHONG, J. W., LEE, C. K., LEE, S. W., and LIN, L. W. A comprehensive review on piezoelectric energy harvesting technology:materials, mechanisms, and applications. Applied Physics Reviews, 5, 041306(2018) |
[1] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[2] | M. ABBASI GAVARI, M. R. HOMAEINEZHAD. Nonlinear dynamic modeling of planar moving Timoshenko beam considering non-rigid non-elastic axial effects[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 479-496. |
[3] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[4] | Shuangpeng LI, Ruoran CHENG, Nannan MA, Chunli ZHANG. Analysis of piezoelectric semiconductor fibers under gradient temperature changes[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 311-320. |
[5] | Yong WANG, Peili WANG, Haodong MENG, Liqun CHEN. Dynamic performance and parameter optimization of a half-vehicle system coupled with an inerter-based X-structure nonlinear energy sink[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 85-110. |
[6] | Xiaoye MAO, Jiabin WU, Junning ZHANG, Hu DING, Liqun CHEN. Dirac method for nonlinear and non-homogenous boundary value problems of plates[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 15-38. |
[7] | N. SHAHVEISI, S. FELI. Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 155-178. |
[8] | Yuan YANG, Nenghui ZHANG, Hanlin LIU, Jiawei LING, Zouqing TAN. Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1547-1562. |
[9] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[10] | Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456. |
[11] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[12] | Youqi ZHANG, Rongyu XIA, Jie XU, Kefu HUANG, Zheng LI. Theoretical analysis of surface waves in piezoelectric medium with periodic shunting circuits[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1287-1304. |
[13] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[14] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[15] | Shengtao ZHANG, Jiaxi ZHOU, Hu DING, Kai WANG, Daolin XU. Fractional nonlinear energy sinks[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 711-726. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||