[1] SPORNS, O., TONONI, G., and KÖTTER, R. The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42(2005) [2] BISWAL, B. B., MENNES, M., ZUO, X. N., GOHEL, S., KELLY, C., SMITH, S. M., BECKMANN, C. F., ADELSTEIN, J. S., BUCKNER, R. L., and COLCOMBE, S. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734-4739(2010) [3] HARI, R. and SALMELIN, R. Magnetoencephalography: from SQUIDs to neuroscience: NeuroImage 20th anniversary special edition. NeuroImage, 61(2), 386-396(2012) [4] BULLMORE, E. and SPORNS, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198(2009) [5] BULLMORE, E. and SPORNS, O. The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336-349(2012) [6] SUK, H., WEE, C. Y., LEE, S. W., and SHEN, D. G. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage, 129, 292-307(2016) [7] HAGMANN, P., CAMMOUN, L., GIGANDET, X., MEULI, R., HONEY, C. J., WEDEEN, V. J., and SPORNS, O. Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159(2008) [8] XIA, M. R., WANG, J. H., and HE, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One, 8(7), e68910(2013) [9] KIM, J., CALHOUN, V. D., SHIM, E., and LEE, J. H. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage, 124, 127-146(2016) [10] XIA, C. H., MA, Z. M., CIRIC, R., GU, S., BETZEL, R. F., KACZKURKIN, A. N., CALKINS, M. E., COOK, P. A., GARCÍA DE LA GARZA, A., and VANDEKAR, S. N. Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 9(1), 1-14(2018) [11] WANG, R. B., ZHANG, Z. K., and TSE, C. K. Neurodynamics analysis of brain information transmission. Applied Mathematics and Mechanics (English Edition), 30(11), 1415-1428(2009) https://doi.org/10.1007/s10483-009-1107-y [12] LIANG, S. and WANG, Z. H. Controlling a neuron by stimulating a coupled neuron. Applied Mathematics and Mechanics (English Edition), 40(1), 13-24(2019) https://doi.org/10.1007/s10483-019-2407-8 [13] YU, Y., WANG, X. M., WANG, Q. S., and WANG, Q. Y. A review of computational modeling and deep brain stimulation: applications to Parkinson's disease. Applied Mathematics and Mechanics (English Edition), 41(12), 1747-1768(2020) https://doi.org/10.1007/s10483-020-2689-9 [14] ENGLOT, D. J., HINKLEY, L. B., KORT, N. S., IMBER, B. S., MIZUIRI, D., HONMA, S. M., FINDLAY, A. M., GARRETT, C., CHEUNG, P. L., and MANTLE, M. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain, 138(8), 2249-2262(2015) [15] HUTCHINGS, F., HAN, C. E., KELLER, S. S., WEBER, B., TAYLOR, P. N., and KAISER, M. Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Computational Biology, 11(12), e1004642(2015) [16] FAN, D. G., ZHENG, Y. H., YANG, Z. C., and WANG, Q. Y. Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Applied Mathematics and Mechanics (English Edition), 41(9), 1287-1302(2020) https://doi.org/10.1007/s10483-020-2644-8 [17] YANG, D. P. and ROBINSON, P. A. Unified analysis of global and focal aspects of absence epilepsy via neural field theory of the corticothalamic system. Physical Review E, 100(3), 032405(2019) [18] WANG, Z. H. and WANG, Q. Y. Stimulation strategies for absence seizures: targeted therapy of the focus in coupled thalamocortical model. Nonlinear Dynamics, 96(2), 1649-1663(2019) [19] LIU, S. Y. and WANG, Q. Y. Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: a computational study. Communications in Nonlinear Science and Numerical Simulation, 52, 203-213(2017) [20] FISCH, B. J. and SPEHLMANN, R. Fisch and Spehlmann's EEG Primer: Basic Principles of Digital and Analog EEG, Elsevier Health Sciences, Amsterdam (1999) [21] LILEY, D. T., CADUSCH, P. J., and DAFILIS, M. P. A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13(1), 67(2001) [22] ROBINSON, P., RENNIE, C., and ROWE, D. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65(4), 041924(2002) [23] FERRAT, L. A., GOODFELLOW, M., and TERRY, J. R. Classifying dynamic transitions in high dimensional neural mass models: a random forest approach. PLoS Computational Biology, 14(3), e1006009(2018) [24] CHEN, M., GUO, D., LI, M., MA, T., WU, S., MA, J., CUI, Y., XIA, Y., XU, P., and YAO, D. Critical roles of the direct GABAergic pallido-cortical pathway in controlling absence seizures. PLoS Computational Biology, 11(10), e1004539(2015) [25] VINAYA, M. and IGNATIUS, R. P. Electromagnetic radiation from memristor applied to basal ganglia helps in controlling absence seizures. Nonlinear Dynamics, 101(4), 2369-2380(2020) [26] ZHAO, J. Y. and WANG, Q. Y. The dynamical role of electromagnetic induction in epileptic seizures: a double-edged sword. Nonlinear Dynamics, 106(1), 975-988(2021) [27] BEURLE, R. L. Properties of a mass of cells capable of regenerating pulses. Philosophical Transactions of the Royal Society of London, A240, 55-94(1956) [28] WILSON, H. R. and COWAN, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1-24(1972) [29] WILSON, H. R. and COWAN, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55-80(1973) [30] DA SILVA, F. L., HOEKS, A., SMITS, H., and ZETTERBERG, L. Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27-37(1974) [31] JANSEN, B. H., ZOURIDAKIS, G., and BRANDT, M. E. A neurophysiologically-based mathematical model of flash visual evoked potentials. Biological Cybernetics, 68(3), 275-283(1993) [32] JANSEN, B. H. and RIT, V. G. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357-366(1995) [33] WENDLING, F., BARTOLOMEI, F., BELLANGER, J. J., and CHAUVEL, P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 15(9), 1499-1508(2002) [34] WANG, P. and KNÖSCHE, T. R. A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity-evaluation with auditory habituation. PLoS One, 8(10), e77876(2013) [35] SHEN, Z., DENG, Z. C., DU, L., ZHANG, H. H., YAN, L. Y., and XIAO, P. C. Control and analysis of epilepsy waveforms in a disinhibition model of cortex network. Nonlinear Dynamics, 103(2), 2063-2079(2021) [36] WENDLING, F., BELLANGER, J. J., BARTOLOMEI, F., and CHAUVEL, P. Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83(4), 367-378(2000) [37] DAVID, O. and FRISTON, K. J. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3), 1743-1755(2003) [38] ZAVAGLIA, M., ASTOLFI, L., BABILONI, F., and URSINO, M. A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. Journal of Neuroscience Methods, 157(2), 317-329(2006) [39] PONS, A. J., CANTERO, J. L., ATIENZA, M., and GARCIA-OJALVO, J. Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling. NeuroImage, 52(3), 848-861(2010) [40] KAMENEVA, T., YING, T., GUO, B., and FREESTONE, D. R. Neural mass models as a tool to investigate neural dynamics during seizures. Journal of Computational Neuroscience, 42(2), 203-215(2017) [41] AHMADIZADEH, S., KAROLY, P. J., NEŠIC, D., GRAYDEN, D. B., COOK, M. J., SOUDRY, D., and FREESTONE, D. R. Bifurcation analysis of two coupled Jansen-Rit neural mass models. PloS One, 13(3), e0192842(2018) [42] CAO, Y., HE, X. Y., HAO, Y. Q., and WANG, Q. Y. Transition dynamics of epileptic seizures in the coupled thalamocortical network model. International Journal of Bifurcation and Chaos, 28(8), 1850104(2018) [43] ZHANG, H. H. and XIAO, P. C. Seizure dynamics of coupled oscillators with epileptor field model. International Journal of Bifurcation and Chaos, 28(3), 1850041(2018) [44] LV, M., WANG, C. N., REN, G. D., MA, J., and SONG, X. L. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479-1490(2016) [45] LV, M., MA, J., YAO, Y. G., and ALZAHRANI, F. Synchronization and wave propagation in neuronal network under field coupling. Science China Technological Sciences, 62(3), 448-457(2019) [46] LIU, Y. Y., SUN, Z. K., YANG, X. L., and XU, W. Dynamical robustness and firing modes in multilayer memristive neural networks of nonidentical neurons. Applied Mathematics and Computation, 409, 126384(2021) [47] LIU, Y. Y., SUN, Z. K., YANG, X. L., and XU, W. Analysis of dynamical robustness of multilayer neuronal networks with inter-layer ephaptic coupling at different scales. Applied Mathematical Modelling, 112, 156-167(2022) [48] LIU, Y. Y., SUN, Z. K., YANG, X. L., and XU, W. Rhythmicity and firing modes in modular neuronal network under electromagnetic field. Nonlinear Dynamics, 104(4), 4391-4400(2021) [49] ZHOU, C. S., ZEMANOVA, L., ZAMORA-LOPEZ, G., HILGETAG, C. C., and KURTHS, J. Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New Journal of Physics, 9(6), 178(2007) [50] HUO, S. Y., TIAN, C. H., ZHENG, M. H., GUAN, S. G., ZHOU, C. S., and LIU, Z. H. Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. National Science Review, 8(1), nwaa125(2021) [51] ANTONY, A. R., ALEXOPOULOS, A. V., GONZÁLEZ-MARTÍNEZ, J. A., MOSHER, J. C., JEHI, L., BURGESS, R. C., SO, N. K., and GALÁN, R. F. Functional connectivity estimated from intracranial EEG predicts surgical outcome in intractable temporal lobe epilepsy. PLoS One, 8(10), e77916(2013) [52] HUNTENBURG, J. M., BAZIN, P. L., and MARGULIES, D. S. Large-scale gradients in human cortical organization. Trends in Cognitive Sciences, 22(1), 21-31(2018) [53] FULCHER, B. D., MURRAY, J. D., ZERBI, V., and WANG, X. J. Multimodal gradients across mouse cortex. Proceedings of the National Academy of Sciences, 116(10), 4689-4695(2019) [54] MARTEN, F., RODRIGUES, S., SUFFCZYNSKI, P., RICHARDSON, M. P., and TERRY, J. R. Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Physical Review E, 79(2), 021911(2009) [55] BLENKINSOP, A., VALENTIN, A., RICHARDSON, M. P., and TERRY, J. R. The dynamic evolution of focal-onset epilepsies-combining theoretical and clinical observations. European Journal of Neuroscience, 36(2), 2188-2200(2012) [56] FAN, X., GASPARD, N., LEGROS, B., LUCCHETTI, F., ERCEK, R., and NONCLERCQ, A. Dynamics underlying interictal to ictal transition in temporal lobe epilepsy: insights from a neural mass model. European Journal of Neuroscience, 47(3), 258-268(2018) |