[1] RICOTTI, L., CAFARELLI, A., IACOVACCI, V., VANNOZZI, L., and MENCIASSI, A. Advanced micro-nano-bio systems for future targeted therapies. Current Nanoscience, 11(2), 144-160(2015) [2] DRINKWATER, B. W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab on a Chip, 16(13), 2360-2375(2016) [3] LI, J., LI, T., XU, T., KIRISTI, M., LIU, W., WU, Z., and WANG, J. Magneto-acoustic hybrid nanomotor. Nano Letters, 15(7), 4814-4821(2015) [4] JONÁŠ, A. and ZEMANEK, P. Light at work: the use of optical forces for particle manipulation,sorting, and analysis. Electrophoresis, 29(24), 4813-4851(2008) [5] ANTFOLK, M., KIM, S. H., KOIZUMI, S., FUJII, T., and LAURELL, T. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Scientific Reports, 7(1), 1-12(2017) [6] YAN, B., CHEN, B., LIU, F., WU, J., and XIONG, Y. Combining field-modulating electroosmotic vortex and insulating post to manipulate particles based on dielectrophoresis. Applied Mathematics and Mechanics (English Edition), 42(3), 371-386(2021) https://doi.org/10.1007/s10483-021-2706-5 [7] XIE, C., CHEN, B., YAN, B., and WU, J. A new method for particle manipulation by combination of dielectrophoresis and field-modulated electroosmotic vortex. Applied Mathematics and Mechanics (English Edition), 39(3), 409-422(2018) https://doi.org/10.1007/s10483-018-2303-9 [8] NGUYEN, K. T., HOANG, M. C., GO, G., KANG, B., CHOI, E., PARK, J. O., and KIM, C. S. Regularization-based independent control of an external electromagnetic actuator to avoid singularity in the spatial manipulation of a microrobot. Control Engineering Practice, 97, 104340(2020) [9] KUMMER, M. P., ABBOTT, J. J., KRATOCHVIL, B. E., BORER, R., SENGUL, A., and NELSON, B. J. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Transactions on Robotics, 26(6), 1006-1017(2010) [10] ONGARO, F., PANE, S., SCHEGGI, S., and MISRA, S. Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Transactions on Robotics, 35(1), 174-183(2018) [11] DING, X., LIN, S. C. S., KIRALY, B., YUE, H., LI, S., CHIANG, I. K., and HUANG, T. J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proceedings of the National Academy of Sciences, 109(28), 11105-11109(2012) [12] TAKEUCHI, M. and YAMANOUCHI, K. Ultrasonic micromanipulation of small particles in liquid. Japanese Journal of Applied Physics, 33(5S), 3045(1994) [13] HAAKE, A., NEILD, A., RADZIWILL, G., and DUAL, J. Positioning, displacement, and localization of cells using ultrasonic forces. Biotechnology and Bioengineering, 92(1), 8-14(2005) [14] HAAKE, A. and DUAL, J. Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body. The Journal of the Acoustical Society of America, 117(5), 2752-2760(2005) [15] WOOD, C. D., CUNNINGHAM, J. E., O’RORKE, R., WÄLTI, C., LINFIELD, E. H., DAVIES, A. G., and EVANS, S. D. Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves. Applied Physics Letters, 94(5), 054101(2009) [16] GUO, F., MAO, Z., CHEN, Y., XIE, Z., LATA, J. P., LI, P., REN, L., LIU, J., YANG, J., DAO, M., SURESH, S., and HUANG, T. J. Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences, 113(6), 1522-1527(2016) [17] COURTNEY, C. R., ONG, C. K., DRINKWATER, B. W., BERNASSAU, A. L., WILCOX, P. D., and CUMMING, D. R. S. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2138), 337-360(2012) [18] CHEN, X., LAM, K. H., CHEN, R., CHEN, Z., QIAN, X., ZHANG, J., and ZHOU, Q. Acoustic levitation and manipulation by a high-frequency focused ring ultrasonic transducer. Applied Physics Letters 114(5), 054103(2019) [19] WU, J. Acoustical tweezers. The Journal of the Acoustical Society of America, 89(5), 2140-2143(1991) [20] LEE, J., TEH, S. Y., LEE, A., KIM, H. H., LEE, C., and SHUNG, K. K. Single beam acoustic trapping. Applied Physics Letters, 95(7), 073701(2009) [21] LEE, J., LEE, C., KIM, H. H., JAKOB, A., LEMOR, R., TEH, S. Y., and SHUNG, K. K. Targeted cell immobilization by ultrasound microbeam. Biotechnology and Bioengineering, 108(7), 1643-1650(2011) [22] HWANG, J. Y., LEE, C., LAM, K. H., KIM, H. H., LEE, J., and SHUNG, K. K. Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(3), 399-406(2014) [23] SILVA, G. T. and BAGGIO, A. L. Designing single-beam multitrapping acoustical tweezers. Ultrasonics, 56, 449-455(2015) [24] BARESCH, D., THOMAS, J. L., and MARCHIANO, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Physical Review Letters, 116(2), 024301(2016) [25] MARZO, A. and DRINKWATER, B. W. Holographic acoustic tweezers. Proceedings of the National Academy of Sciences, 116(1), 84-89(2019) [26] MARZO, A., SEAH, S. A., DRINKWATER, B. W., SAHOO, D. R., LONG, B., and SUBRAMANIAN, S. Holographic acoustic elements for manipulation of levitated objects. Nature Communications, 6(1), 1-7(2015) [27] MARZO, A., BARNES, A., and DRINKWATER, B. W. TinyLev: a multi-emitter single-axis acoustic levitator. Review of Scientific Instruments, 88(8), 085105(2017) [28] MARZO, A., CALEAP, M., and DRINKWATER, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles. Physical Review Letters, 120(4), 044301(2018) [29] GHANEM, M. A., MAXWELL, A. D., WANG, Y. N., CUNITZ, B. W., KHOKHLOVA, V. A., SAPOZHNIKOV, O. A., and BAILEY, M. R. Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of Sciences, 117(29), 16848-16855(2020) [30] YANG, Y., MA, T., LI, S., ZHANG, Q., HUANG, J., LIU, Y., and ZHENG, H. Self-navigated 3D acoustic tweezers in complex media based on time reversal. Research, 1, 801-813(2021) [31] KHAN, S. A. Vortex type oscillations in a multi-component plasma. Results in Physics, 7, 4065-4070(2017) [32] SHI, C., DUBOIS, M., WANG, Y., and ZHANG, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences, 114(28), 7250-7253(2017) [33] LO, W. C., FAN, C. H., HO, Y. J., LIN, C. W., and YEH, C. K. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proceedings of the National Academy of Sciences, 118(4), e2023188118(2021) [34] DONG, Q. H. and CHEN, L. Impact dynamics analysis of free-floating space manipulator capturing satellite on orbit and robust adaptive compound control algorithm design for suppressing motion. Applied Mathematics and Mechanics (English Edition), 35(4), 413-422(2014) https://doi.org/10.1007/s10483-014-1801-7 [35] BRUUS, H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab on a Chip, 12(6), 1014-1021(2012) [36] LAURELL, T., PETERSSON, F., and NILSSON, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chemical Society Reviews, 36(3), 492-506(2007) [37] CAO, H. X., JUNG, D., LEE, H. S., GO, G., NAN, M., CHOI, E., KIM, C. S., PARK, J. O., and KANG, B. Micromotor manipulation using ultrasonic active traveling waves. Micromachines, 12(2), 192(2021) [38] DAHMANI, J., LAPORTE, C., PEREIRA, D., BÉLANGER, P., and PETIT, Y. Predictive model for designing soft-tissue mimicking ultrasound phantoms with adjustable elasticity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(4), 715-726(2019) |