[1] GUTIERREZ-LEMINI, D. Engineering Viscoelasticity, Springer, New York (2014) [2] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703-4710(1983) [3] KOITER, W. T. Couple stresses in the theory of elasticity, I and II. Koninklijke Nederlandse Akademie van Wetenschappen, 67, 17-44(1964) [4] YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731-2743(2002) [5] GHAYESH, M. H. Dynamics of functionally graded viscoelastic microbeams. International Journal of Engineering Science, 124, 115-131(2018) [6] GHAYESH, M. H. Viscoelastic dynamics of axially FG microbeams. International Journal of Engineering Science, 135, 75-85(2019) [7] ERINGEN, A. C. Theory of nonlocal elasticity and some applications. Res Mechanica, 21(4), 313-342(1987) [8] LEI, Y., MURMU, T., ADHIKARI, S., and FRISWELL, M. I. Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. European Journal of Mechanics-A/Solids, 42, 125-136(2013) [9] LEI, Y., ADHIKARI, S., and FRISWELL, M. I. Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. International Journal of Engineering Science, 66-67, 1-3(2013) [10] LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298-313(2015) [11] SHARIFI, Z., KHORDAD, R., GHARAATI, A., and FOROZANI, G. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 40(12), 1723-1740(2019) https://doi.org/10.1007/s10483-019-2545-8 [12] LU, L., ZHU, L., GUO, X., ZHAO, J., and LIU, G. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Applied Mathematics and Mechanics (English Edition), 40(12), 1695-1722(2019) https://doi.org/10.1007/s10483-019-2549-7 [13] ZENG, S., WANG, K., WANG, B., and WU, J. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41(6), 859-880(2020) https://doi.org/10.1007/s10483-020-2620-8 [14] SONG, R., SAHMANI, S., and SAFAEI, B. Isogeometric nonlocal strain gradient quasi-three-dimensional plate model for thermal postbuckling of porous functionally graded microplates with central cutout with different shapes. Applied Mathematics and Mechanics (English Edition), 42(6), 771-786(2021) https://doi.org/10.1007/s10483-021-2725-7 [15] ZAERA, R., SERRANO, O., and FERNANDEZ-SAEZ, J. On the consistency of the nonlocal strain gradient elasticity. International Journal of Engineering Science, 138, 65-81(2019) [16] LI, C., QING, H., and GAO, C. Theoretical analysis for static bending of Euler-Bernoulli using different nonlocal gradient models. Mechanics of Advanced Materials and Structures, 88, 1965-1977(2021) [17] BIAN, P. L. and QING, H. On bending consistency of Timoshenko beam using differential and integral nonlocal strain gradient models. Zeitschrift für Angewandte Mathematik und Mechanik, 101, 202000132(2021) [18] BARRETTA, R. and DE SCIARRA, F. M. Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. International Journal of Engineering Science, 130, 187-198(2018) [19] BIAN, P. L. and QING, H. Elastic buckling and free vibration of nonlocal strain gradient Euler-Bernoulli beams using Laplace transform. Zeitschrift für Angewandte Mathematik und Mechanik, 102, 202100152(2022) [20] ZHANG, P. and QING, H. The consistency of the nonlocal strain gradient integral model in size-dependent bending analysis of beam structures. International Journal of Mechanical Sciences, 189, 105991(2021) [21] ZHANG, P. and QING, H. Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model. Acta Mechanica, 231, 5251-5276(2020) [22] BARRETTA, R., FAGHIDIAN, S. A., DE SCIARRA, F. M., PENNA, R., and PINNOLA, F. P. On torsion of nonlocal Lam strain gradient FG elastic beams. Composite Structures, 233, 111550(2020) [23] BARRETTA, R. and DE SCIARRA, F. M. Variational nonlocal gradient elasticity for nano-beams. International Journal of Engineering Science, 143, 73-91(2019) [24] FANG, Y., LI, P., ZHOU, H., and ZUO, W. Thermoelastic damping in flexural vibration of bilayered microbeams with circular cross-section. Applied Mathematical Modelling, 77, 1129-1147(2020) [25] ZHANG, P., SCHIAVONE, P., and QING, H. Local/nonlocal mixture integral models with bi-Helmholtz kernel for free vibration of Euler-Bernoulli beams under thermal effect. Journal of Sound and Vibration, 525, 116798(2022) |