[1] GÉLÉOC, G. S. and HOLT, J. R. Sound strategies for hearing restoration. Science, 344(6184), 1241062(2014) [2] BRIGANDE, J. V. and HELLER, S. Quo vadis, hair cell regeneration? Nature Neuroscience, 12(5), 679-685(2009) [3] SCHNUPP, J. W. and CARR, C. E. On hearing with more than one ear: lessons from evolution. Nature Neuroscience, 12(6), 692-697(2009) [4] DALLOS, P., BILLONE, N. C., DURRANT, J. D., WANG, C. Y., and RAYNOR, S. Cochlear inner and outer hair cells: functional differences. Science, 117(4046), 356-358(1972) [5] LAZARD, D. S. and GIRAUD, A. L. Faster phonological processing and right occipito-temporal coupling in deaf adults signal poor cochlear implant outcome. Nature Communications, 8(1), 1-19(2017) [6] SUZUKI, J., HASHIMOTO, K., and XIAO, R. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Scientific Reports, 7(1), 1-12(2017) [7] ALBERT, E. Neuroscience: hearing restored with new hair cells. nature, 493, 274-275(2013) [8] MULLER, U. and BARRGILLESPIE, P. G. New treatment options for hearing loss. Nature Reviews Drug Discovery, 14(5), 346(2015) [9] VON BÉKÉSY, G. V. Experiments in Hearing, McGraw-Hill Book Company, New York (1960) [10] REN, T., HE, W., and GILLESPIE, P. G. Measurement of cochlear power gain in the sensitive gerbil ear. Nature Communications, 2(1), 1-7(2011) [11] BOER, E. D. and NUTTALL, A. L. Cochlear Mechanics, Tuning, Non-Linearities, Oxford University Press, Oxford, 139-177(2010) [12] REICHENBACH, T. and HUDSPETH, A. J. Dual contribution to amplification in the mammalian inner ear. Physical Review Letters, 105(11), 102-118(2010) [13] NIENHUYS, T. G. and CLARK, G. M. Frequency discrimination following the selective destruction of cochlear inner and outer hair cells. Science, 199(4335), 1356-1357(1978) [14] SANTOS, J. and DIGLER, J. P. Whole cell current and mechanical responses of isolated outer hair cell. Hearing Research, 35, 143-150(1988) [15] BERMINGHAM, N. A., HASSAN, B. A., PRICE, S. D., VOLLRATH, M. A., BEN-ARIE, N., EATOCK, R. A., and ZOGHBI, H. Y. Math1: an essential gene for the generation of inner ear hair cells. Science, 284(5421), 1837-1841(1999) [16] JIA, S. and HE, D. Z. Motility associated hair bundle motion in mammalian outer hair cells. Nature Neuroscience, 8(8), 1028-1034(2015) [17] CHAN, D. K. and HUDSPETH, A. J. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nature Neuroscience, 8(2), 149-155(2005) [18] ZWISLOCKI, J. J. and KLETSKY, E. J. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science, 204(4393), 639-641(1979) [19] YAO, W., LIANG, J., REN, L., MA, J., ZHAO, Z., WANG, J., XIE, Y., DAI, P., and ZHANG, T. Revealing the actions of the human cochlear basilar membrane at low frequency. Communications in Nonlinear Science and Numerical Simulation, 104, 106043(2021) [20] NAM, J. H. and FETTIPLACE, R. A cochlear partition model incorporating realistic electrical and mechanical parameters for outer hair cells. AIP Conference Proceedings, 1403(1), 170-175(2011) [21] STEELE, C. R. and PURIA, S. Force on inner hair cell cilia. International Journal of Solids and Structures, 42(21-22), 5887-5904(2005) [22] MEAUD, J. and GROSH, K. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. Journal of the Acoustical Society of America, 127(3), 1411(2010) [23] CHO, A. Math clears up an inner-ear mystery: spiral shape pumps up the bass. Science, 24, 1087(2006) [24] ASHMORE, J. Cochlear outer hair cell motility. Physiological Reviews, 88, 173-210(2008) [25] SHERA, C. A. Mammalian spontaneous otoacoustic emissions are amplitude stabilized cochlear standing waves. The Journal of the Acoustical Society of America, 114, 244-262(2003) [26] ZHANG, X. and GAN, R. A comprehensive model of human ear for analysis of implantable hearing devices. Transactions on Biomedical Engineering, 58(10), 3024-3027(2011) [27] YAO, W., ZHAO, Z., WANG, J., and DUAN, M. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity. Computers in Biology Medicine, 136, 104756(2021) [28] GIVELBERG, E. and BUNN, J. A comprehensive three-dimensional model of the cochlea. Journal of Computational Physics, 191, 377-391(2003) [29] SACK, I., JOHRENS, K., WURFEL, J., and BRAUN, J. Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter, 9(24), 5672-5680(2013) [30] CHENG, T., DAI, C., and GAN, R. Z. Viscoelastic properties of human tympanic membrane. Annals of Biomedical Engineering, 35(2), 305-314(2007) [31] MAURI, A., EHRET, A. E., DE FOCATIIS, D. S., and MAZZA, E. A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter. Biomechanics and Modeling in Mechanobiology, 15(4), 1005-1017(2016) [32] GHOSH, P., RAMESHBABU, A. P., and DHARA, S. Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model. Langmuir the ACS Journal of Surfaces and Colloids, 30(28), 8442-8451(2014) [33] MICHIKO, S., KUNI, H., and HIROSHI, W. Viscoelastic properties of outer hair cells. Otology Japan, 9(5), 535-541(1999) [34] LIM, K. M. and STEELE, C. R. A three-dimensional nonlinear active cochlear model analyzed by the WKB numeric method. Hearing Research, 170, 190-205(2002) [35] LIU, S. and WHITE, R. D. Orthotropic material properties of the gerbil basilar membrane. The Journal of the Acoustical Society of America, 123, 2160-2171(2008) [36] CHAMPNEYS, A. R. The Dynamics of Parametric Excitation, Encyclopedia of Complexity and Systems Science, Springer, 183-204(2009) [37] LEVEQUE, R. J., PESKIN, C. S., and LAX, P. D. Solution of a two-dimensional cochlea model with fluid viscosity. SIAM Journal on Applied Mathematics, 48(1), 191-213(1988) [38] GREENWOOD, D. Empirical Travel Time Functions on the Basilar Membrane, Psychophysics and Physiology of Hearing, London, 43-53(1977) |