1 |
KÖNIG, J. Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam (2012)
|
2 |
PENG, H., LIU, Y., CHEN, H., and ZHANG, Z. Shakedown analysis of bounded kinematic hardening engineering structures under complex cyclic loads: theoretical aspects and a direct approach. Engineering Structures, 256, 114034 (2022)
|
3 |
DO, H., and NGUYEN-XUAN, H. Limit and shakedown isogeometric analysis of structures based on Bézier extraction. European Journal of Mechanics A-Solids, 63, 149- 164 (2017)
|
4 |
LI, K., CHENG, G., WANG, Y., and LIANG, Y. A novel primal-dual eigenstress-driven method for shakedown analysis of structures. International Journal for Numerical Methods in Engineering, 122 (11), 2770- 2801 (2021)
|
5 |
CHEN, G., BEZOLD, A., and BROECKMANN, C. Influence of the size and boundary conditions on the predicted effective strengths of particulate reinforced metal matrix composites (PRMMCs). Composite Structures, 189, 330- 339 (2018)
|
6 |
CHEN, G., XIN, S., ZHANG, L., and BROECKMANN, C. Statistical analyses of the strengths of particulate reinforced metal matrix composites (PRMMCs) subjected to multiple tensile and shear stresses. Chinese Journal of Mechanical Engineering, 34 (1), 1- 12 (2021)
|
7 |
HACHEMI, A., CHEN, M., CHEN, G., and WEICHERT, D. Limit state of structures made of heterogeneous materials. International Journal of Plasticity, 63, 124- 137 (2014)
|
8 |
LE, C., NGUYEN, P., ASKES, H., and PHAM, D. A computational homogenization approach for limit analysis of heterogeneous materials. International Journal for Numerical Methods in Engineering, 112 (10), 1381- 1401 (2017)
|
9 |
LI, H., and YU, H. A non-linear programming approach to kinematic shakedown analysis of composite materials. International Journal for Numerical Methods in Engineering, 66 (1), 117- 146 (2006)
|
10 |
NGUYEN, P., and LE, C. Failure analysis of anisotropic materials using computational homogenised limit analysis. Computers Structures, 256, 106646 (2021)
|
11 |
MAGOARIEC, H., BOURGEOIS, S., and DÉBORDES, O. Elastic plastic shakedown of 3D periodic heterogeneous media: a direct numerical approach. International Journal of Plasticity, 20 (8-9), 1655- 1675 (2004)
|
12 |
GARCEA, G., and LEONETTI, L. A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. International Journal for Numerical Methods in Engineering, 88 (11), 1085- 1111 (2011)
|
13 |
MELAN, E. Zur Plastizität des räumlichen Kontinuums. Ingenieur-Archiv, 9 (2), 116- 126 (1938)
|
14 |
KOITER, W. General theorems for elastic plastic solids. Progress in Solid Mechanics, 1, 165- 221 (1960)
|
15 |
WEICHERT, D. On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures. International Journal of Plasticity, 2 (2), 135- 148 (1986)
|
16 |
FRANÇOIS, A., ABDELKADER, H., HOAI, AN L., SAID, M., and TAO, P. Application of lower bound direct method to engineering structures. Journal of Global Optimization, 37 (4), 609- 630 (2007)
|
17 |
RI, J., and HONG, H. A basis reduction method using proper orthogonal decomposition for shakedown analysis of kinematic hardening material. Computational Mechanics, 64 (1), 1- 13 (2019)
|
18 |
CHEN, M. and HACHEMI, A. Progress in plastic design of composites. Direct Methods for Limit States in Structures and Materials(eds. SPILIOPOULOS, K. and WEICHERT, D.), Springer, Dordrecht, 119-138 (2014)
|
19 |
KLEBANOV, J., and BOYLE, J. Shakedown of creeping structures. International Journal of Solids Structures, 35 (23), 3121- 3133 (1998)
|
20 |
YAN, J., CHENG, G., LIU, S., and LIU, L. Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. International Journal of Mechanical Sciences, 48 (4), 400- 413 (2006)
|
21 |
YAN, J., CHENG, G., LIU, S., and LIU, L. Prediction of equivalent elastic properties of truss materials with periodic microstructure and the scale effects (in Chinese). Chinese Journal of Solid Mechanics, 26 (4), 421- 428 (2005)
|
22 |
HEITZER, M., POP, G., and STAAT, M. Basis reduction for the shakedown problem for bounded kinematic hardening material. Journal of Global Optimization, 17 (1), 185- 200 (2000)
|
23 |
PENG, H., LIU, Y., and CHEN, H. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures. Computational Mechanics, 63, 1- 22 (2019)
|
24 |
PENG, H., and LIU, Y. Stress compensation method for structural shakedown analysis. Key Engineering Materials, 794, 169- 181 (2019)
|
25 |
TARN, J., DVORAK, G., and RAO, M. Shakedown of unidirectional composites. International Journal of Solids Structures, 11 (6), 751- 764 (1975)
|
26 |
WEICHERT, D., HACHEMI, A., and SCHWABE, F. Application of shakedown analysis to the plastic design of composites. Archive of Applied Mechanics, 69 (9), 623- 633 (1999)
|
27 |
WEICHERT, D., HACHEMI, A., and SCHWABE, F. Shakedown analysis of composites. Mechanics Research Communications, 26, 309- 318 (1999)
|
28 |
CHEN, M., HACHEMI, A., and WEICHERT, D. Shakedown and optimization analysis of periodic composites. Limit State of Materials and Structures(eds. DE SAXCÉ, G., OUESLATI, A., CHARKALUK, E., and TRITSCH, J.), Springer, London, 45-69 (2013)
|
29 |
CHEN, M., ZHANG, L., WEICHERT, D., and TANG, W. Shakedown and limit analysis of periodic composites. PAMM: Proceedings in Applied Mathematics and Mechanics, 9 (1), 415- 416 (2009)
|
30 |
RI, J., and HONG, H. A basis reduction method using proper orthogonal decomposition for lower bound shakedown analysis of composite material. Archive of Applied Mechanics, 88 (10), 1843- 1857 (2018)
|
31 |
RI, J., RI, U., HONG, H., and KWAK, C. Eigenstress-based shakedown analysis for estimation of effective strength of composites under variable load. Composite Structures, 280, 114851 (2022)
|
32 |
XIA, Z., ZHOU, C., YONG, Q., and WANG, X. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids Structures, 43 (2), 266- 278 (2006)
|
33 |
MURA, T Micromechanics of Defects in Solids, Springer Science & Business Media, Berlin (2013)
|
34 |
MACKENZIE, D., SHI, J., and BOYLE, J. Finite element modelling for limit analysis by the elastic compensation method. Computers Structures, 51, 403- 410 (1994)
|
35 |
CHEN, H. Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. Journal of Pressure Vessel Technology, 132 (1), 011202 (2010)
|
36 |
BORINO, G., and POLIZZOTTO, C. Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations. International Journal of Plasticity, 12, 215- 228 (1996)
|
37 |
CHRISTIANSEN, E., and ANDERSEN, K. Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering, 46, 1185- 1202 (1998)
|
38 |
HACHEMI, A., and WEICHERT, D. Numerical shakedown analysis of damaged structures. Computer Methods in Applied Mechanics and Engineering, 160, 57- 70 (1998)
|
39 |
SIMON, J. Limit states of structures in n-dimensional loading spaces with limited kinematical hardening. Computers Structures, 147, 4- 13 (2015)
|
40 |
Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual(2023) http://www.gurobi.com
|
41 |
GRANT, M. and BOYD, S. CVX: Matlab Software for Disciplined Convex Programming, version 2.1 (2014) http://cvxr.com/cvx
|
42 |
HORI, M., and NEMAT-NASSER, S. On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mechanics of Materials, 31 (10), 667- 682 (1999)
|
43 |
NIE, Y., LI, Z., and CHENG, G. Efficient prediction of the effective nonlinear properties of porous material by FEM-cluster based analysis (FCA). Computer Methods in Applied Mechanics Engineering, 383, 113921 (2021)
|
44 |
ANDERSEN, M., POULSEN, P., and OLESEN, J. Partially mixed lower bound constant stress tetrahedral element for finite element limit analysis. Computers Structures, 258, 106672 (2022)
|
45 |
ZHANG, H., LIU, Y., and XU, B. Plastic limit analysis of ductile composite structures from micro- to macro-mechanical analysis. Acta Mechanica Solida Sinica, 22 (1), 73- 84 (2009)
|
46 |
NIE, Y., LI, Z., GONG, X., and CHENG, G. Fast construction of cluster interaction matrix for data-driven cluster-based reduced-order model and prediction of elastoplastic stress-strain curves and yield surface. Computer Methods in Applied Mechanics Engineering, 418, 116480 (2024)
|