1 |
GUO,X.,DONG,X. Y.,ZOU,G. J.,GAO,H. J., andZHAI,W.Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms.Science Advances,9(2),eadf7075(2023)
|
2 |
HUA,M. T.,WU,S. W.,MA,Y. F.,ZHAO,Y. S.,CHEN,Z. L.,FRENKEL,I.,STRZALKA,J.,ZHOU,H.,ZHU,X. Y., andHE,X. M.Strong tough hydrogels via the synergy of freeze-casting and salting out.nature,590(7847),594-599(2021)
|
3 |
LIU,C.,MORIMOTO,N.,JIANG,L.,KAWAHARA,S.,NORITOMI,T.,YOKOYAMA,H.,MAYUMI,K., andITO,K.Tough hydrogels with rapid self-reinforcement.Science,372(6546),1078-1081(2021)
|
4 |
NIAN,G. D.,KIM,J.,BAO,X. Y., andSUO,Z. G.Making highly elastic and tough hydrogels from doughs.Advanced Materials,34(50),2206577(2022)
|
5 |
WANG,Z.,ZHENG,X. J.,OUCHI,T.,KOUZNETSOVA,T. B.,BEECH,H. K.,AV-RON,S.,MATSUDA,T.,BOWSER,B. H.,WANG,S.,JOHNSON,J. A.,KALOW,J. A.,OLSEN,B. D.,GONG,J. P.,RUBINSTEIN,M., andCRAIG,S. L.Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands.Science,374(6564),193-196(2021)
|
6 |
ZHAO,X. H.,CHEN,X. Y.,YUK,H.,LIN,S. T.,LIU,X. Y., andPARADA,G.Soft materials by design: unconventional polymer networks give extreme properties.Chemical Reviews,121(8),4309-4372(2021)
|
7 |
HAN,S. J.,WU,Q. R.,ZHU,J. D.,ZHANG,J. Y.,CHEN,A. B.,SU,S.,LIU,J. T.,HUANG,J. R.,YANG,X. X., andGUAN,L. H.Tough hydrogel with high water content and ordered fibrous structures as an artificial human ligament.Materials Horizons,10(3),1012-1019(2023)
|
8 |
GONG,J. P.,KATSUYAMA,Y.,KUROKAWA,T., andOSADA,Y.Double-network hydrogels with extremely high mechanical strength.Advanced Materials,15(14),1155-1158(2003)
|
9 |
JIA,Y. T.,ZHOU,Z. D.,JIANG,H. L., andLIU,Z. S.Characterization of fracture toughness and damage zone of double network hydrogels.Journal of the Mechanics and Physics of Solids,169,105090(2022)
|
10 |
KIM,J.,ZHANG,G. G.,SHI,M. X. Z., andSUO,Z. G.Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links.Science,374(6564),212-216(2021)
|
11 |
LI,D. K.,ZHAN,W.,ZUO,W.,LI,L. P.,ZHANG,J.,CAI,G. Y., andTIAN,Y.Elastic, tough and switchable swelling hydrogels with high entanglements and low crosslinks for water remediation.Chemical Engineering Journal,450,138417(2022)
|
12 |
LIU,P. Y.,ZHANG,Y.,GUAN,Y., andZHANG,Y. J.Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content.Advanced Materials,35(13),2210021(2023)
|
13 |
SHI,M. X. Z.,KIM,J.,NIAN,G. D., andSUO,Z. G.Highly entangled hydrogels with degradable crosslinks.Extreme Mechanics Letters,59,101953(2023)
|
14 |
WANG,Y. C.,NIAN,G. D.,KIM,J., andSUO,Z. G.Polyacrylamide hydrogels VI: synthesis-property relation.Journal of the Mechanics and Physics of Solids,170,105099(2023)
|
15 |
TANI,J.,TAKAGI,T., andQIU,J.Intelligent material systems: application of functional materials.Applied Mechanics Reviews,51(8),505-521(1998)
|
16 |
BOSNJAK,N., andSILBERSTEIN,M. N.Pathways to tough yet soft materials.Science,374(6564),150-151(2021)
|
17 |
BUKOWSKI,C.,ZHANG,T.,RIGGLEMAN,R. A., andCROSBY,A. J.Load-bearing entanglements in polymer glasses.Science Advances,7(38),eabg9763(2021)
|
18 |
ZHU,J. K., andLUO,J.Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels.Acta Mechanica,229,1703-1719(2018)
|
19 |
EDWARDS,S. F., andVILGIS,T.The effect of entanglements in rubber elasticity.Polymer,27(4),483-492(1986)
|
20 |
NIAN,X. C.,YANG,Q. S.,MA,L. H., andZHANG,X. Y.Constitutive modeling for hydrogel with chain entanglements and application to adaptive hydrogel composite structures.Mechanics of Advanced Materials and Structures,30(24),5122-5136(2023)
|
21 |
BAYAT,M. R.,DOLATABADI,R., andBAGHANI,M.Transient swelling response of ph-sensitive hydrogels: a monophasic constitutive model and numerical implementation.International Journal of Pharmaceutics,577,119030(2020)
|
22 |
BÖGER,L.,NATEGHI,A., andMIEHE,C.A minimization principle for deformation-diffusion processes in polymeric hydrogels: constitutive modeling and FE implementation.International Journal of Solids and Structures,121,257-274(2017)
|
23 |
MENG,Q. H., andSHI,X. H.A mechanistically motivated constitutive model of biopolymer hydrogels with structural evolution.Journal of the Mechanics and Physics of Solids,173,105205(2023)
|
24 |
HUANG,R.,ZHENG,S. J.,LIU,Z. S., andNG,T. Y.Recent advances of the constitutive models of smart materials — hydrogels and shape memory polymers.International Journal of Applied Mechanics,12(2),2050014(2020)
|
25 |
PAN,Z. Z., andBRASSART,L.Constitutive modelling of hydrolytic degradation in hydrogels.Journal of the Mechanics and Physics of Solids,167,105016(2022)
|
26 |
WANG,Q. M., andGAO,Z. M.A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers.Journal of the Mechanics and Physics of Solids,94,127-147(2016)
|
27 |
DAL,H.,AÇIKGÖZ,K., andBADIENIA,Y.On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review.Applied Mechanics Reviews,73(2),020802(2021)
|
28 |
LU,D., andCHEN,B.A constitutive theory for large stretch behaviors of slide-ring gels by considering molecular frictions.Soft Matter,19(8),1531-1539(2023)
|
29 |
FALENDER,J. R.,YEH,G. S. Y., andMARK,J. E.The effect of chain length distribution on elastomeric properties 1: comparisons between random and highly nonrandom networks.Journal of the American Chemical Society,101(24),7353-7356(1979)
|
30 |
LI,B., andBOUKLAS,N.A variational phase-field model for brittle fracture in polydisperse elastomer networks.International Journal of Solids and Structures,182-183,193-204(2020)
|
31 |
DARGAZANY,R., andITSKOV,M.A network evolution model for the anisotropic Mullins effect in carbon black filled rubbers.International Journal of Solids and Structures,46(16),2967-2977(2009)
|
32 |
ZHANG,H. H., andHU,Y. H.A statistical-chain-based theory for dynamic living polymeric gels with concurrent diffusion, chain remodeling reactions and deformation.Journal of the Mechanics and Physics of Solids,172,105155(2023)
|
33 |
GHAREEB,A., andELBANNA,A.An adaptive quasicontinuum approach for modeling fracture in networked materials: application to modeling of polymer networks.Journal of the Mechanics and Physics of Solids,137,103819(2020)
|
34 |
LAVOIE,S. R.,LONG,R., andTANG,T.Modeling the mechanics of polymer chains with deformable and active bonds.The Journal of Physical Chemistry B,124(1),253-265(2020)
|
35 |
WANG,Q. M.,GOSSWEILER,G. R.,CRAIG,S. L., andZHAO,X. H.Mechanics of mechanochemically responsive elastomers.Journal of the Mechanics and Physics of Solids,82,320-344(2015)
|
36 |
GUO,Q., andZAÏRI,F.A micromechanics-based model for deformation-induced damage and failure in elastomeric media.International Journal of Plasticity,140,102976(2021)
|
37 |
LU,T. Q.,WANG,Z. T.,TANG,J. D.,ZHANG,W. L., andWANG,T. J.A pseudo-elasticity theory to model the strain-softening behavior of tough hydrogels.Journal of the Mechanics and Physics of Solids,137,103832(2020)
|
38 |
ITSKOV,M., andKNYAZEVA,A.A rubber elasticity and softening model based on chain length statistics.International Journal of Solids and Structures,80,512-519(2016)
|
39 |
YASUDA,Y.,MASUMOTO,T.,MAYUMI,K.,TODA,M.,YOKOYAMA,H.,MORITA,H., andITO,K.Molecular dynamics simulation and theoretical model of elasticity in slide-ring gels.ACS Macro Letters,9(9),1280-1285(2020)
|
40 |
TRELOAR,L. R. G.The elasticity and related properties of rubbers.Reports on Progress in Physics,36(7),755(1973)
|
41 |
CAI,S. Q., andSUO,Z. G.Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels.Journal of the Mechanics and Physics of Solids,59(11),2259-2278(2011)
|
42 |
MARKO,J. F., andSIGGIA,E. D.Statistical mechanics of supercoiled DNA.Physical Review E,52(3),2912-2938(1995)
|
43 |
EPSTEIN,M., andSEGEV,R.Differentiable manifolds and the principle of virtual work in continuum mechanics.Journal of Mathematical Physics,21(5),1243-1245(2008)
|
44 |
LÁNCZOS, C. The Variational Principles of Mechanics, Courier Corporation, U. S. A. (2012)
|
45 |
NORIOKA,C.,INAMOTO,Y.,HAJIME,C.,KAWAMURA,A., andMIYATA,T.A universal method to easily design tough and stretchable hydrogels.NPG Asia Materials,13(1),34(2021)
|
46 |
JAMES,H. M., andGUTH,E.Theory of the elastic properties of rubber.The Journal of Chemical Physics,11(10),455-481(1943)
|
47 |
ARRUDA,E. M., andBOYCE,M. C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials.Journal of the Mechanics and Physics of Solids,41(2),389-412(1993)
|
48 |
FAN,Q. Y.,CHEN,B., andCAO,Y.Constitutive model reveals the defect-dependent viscoelasticity of protein hydrogels.Journal of the Mechanics and Physics of Solids,125,653-665(2019)
|