1 |
CHOI, C., BANSAL, S., MÜNZENRIEDER, N., and SUBRAMANIAN, S. Fabricating and assembling acoustic metamaterials and phononic crystals. Advanced Engineering Materials, 23 (2), 2000988 (2021)
|
2 |
GHAVANLOO, E., EL-BORGI, S., and FAZELZADEH, S. A. Formation of quasi-static stop band in a new one-dimensional metamaterial. Archive of Applied Mechanics, 93 (1), 287- 299 (2023)
|
3 |
LIU, H., YANG, H., LI, J., WEI, L., and CHEN, H. T. Advances in active and tunable electromagnetic metamaterial devices: principles, realizations, and applications. Frontiers of Physics, 16 (3), 33601 (2021)
|
4 |
CHEN, S., and WU, Y. Recent advances in acoustic and elastic metamaterials. Reports on Progress in Physics, 83 (2), 026001 (2020)
|
5 |
SMITH, D. R., PENDRY, J. B., and WILTSHIRE, M. C. K. Metamaterials and negative refractive index. Science, 305 (5685), 788- 792 (2004)
|
6 |
GARDINER, A., DALY, P., DOMINGO-ROCA, R., WINDMILL, J. F. C., FEENEY, A., and JACKSON-CAMARGO, J. C. Additive manufacture of small-scale metamaterial structures for acoustic and ultrasonic applications. Micromachines, 12 (6), 634 (2021)
|
7 |
MIZUKAMI, K., KAWAGUCHI, T., OGI, K., and KOGA, Y. Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration. Composite Structures, 255, 112949 (2021)
|
8 |
GÓRA, P., and ŁOPATO, P. Metamaterials' application in sustainable technologies and an introduction to their influence on energy harvesting devices. Applied Sciences, 13 (13), 7742 (2023)
|
9 |
CHALLAMEL, N., ZHANG, Y. P., WANG, C. M., RUTA, G., and DELL'ISOLA, F. Discrete and continuous models of linear elasticity: history and connections. Continuum Mechanics and Thermodynamics, 35 (2), 347- 391 (2023)
|
10 |
DEYMIER, P., and RUNGE, K. One-dimensional mass-spring chains supporting elastic waves with non-conventional topology. Crystals, 6 (4), 44 (2016)
|
11 |
GHAVANLOO, E., FAZELZADEH, S. A., and RAFII-TABAR, H. Formulation of an efficient continuum mechanics-based model to study wave propagation in one-dimensional diatomic lattices. Mechanics Research Communications, 103, 103467 (2020)
|
12 |
XU, S. F., XU, Z. L., and CHUANG, K. C. Hybrid bandgaps in mass-coupled Bragg atomic chains: generation and switching. Frontiers in Materials, 8, 774612 (2021)
|
13 |
ZHAO, P., ZHANG, K., ZHAO, C., and DENG, Z. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition, 42 (1), 53- 64 (2021)
doi: 10.1007/s10483-021-2684-8
|
14 |
GRINBERG, I., and MATLACK, K. H. Nonlinear elastic wave propagation in a phononic material with periodic solid-solid contact interface. Wave Motion, 93, 102466 (2020)
|
15 |
HOU, X., DENG, Z., and ZHOU, J. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 31 (11), 1371- 1382 (2010)
doi: 10.1007/s10483-010-1369-7
|
16 |
MANKTELOW, K. L., LEAMY, M. J., and RUZZENE, M. Analysis and experimental estimation of nonlinear dispersion in a periodic string. Journal of Vibration and Acoustics, 136 (3), 031016 (2014)
|
17 |
PACKO, P., UHL, T., STASZEWSKI, W. J., and LEAMY, M. J. Amplitude-dependent Lamb wave dispersion in nonlinear plates. The Journal of the Acoustical Society of America, 140 (2), 1319- 1331 (2016)
|
18 |
ZHAO, Y., HOU, X., ZHANG, K., and DENG, Z. Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial. Applied Mathematics and Mechanics (English Edition), 44 (5), 745- 758 (2023)
doi: 10.1007/s10483-023-2985-6
|
19 |
NARISETTI, R. K., RUZZENE, M., and LEAMY, M. J. Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion, 49 (2), 394- 410 (2012)
|
20 |
WANG, X., ZHU, W., and LIU, M. Steady-state periodic solutions of the nonlinear wave propagation problem of a one-dimensional lattice using a new methodology with an incremental harmonic balance method that handles time delays. Nonlinear Dynamics, 100, 1457- 1467 (2020)
|
21 |
CAMPANA, M. A., OUISSE, M., SADOULET-REBOUL, E., RUZZENE, M., NEILD, S., and SCARPA, F. Impact of non-linear resonators in periodic structures using a perturbation approach. Mechanical Systems and Signal Processing, 135, 106408 (2020)
|
22 |
WEI, L. S., WANG, Y. Z., and WANG, Y. S. Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method. International Journal of Mechanical Sciences, 173, 105433 (2020)
|
23 |
GEORGIEVA, A., KRIECHERBAUER, T., and VENAKIDES, S. Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium. SIAM Journal on Applied Mathematics, 60 (1), 272- 294 (1999)
|
24 |
CHAKRABORTY, G., and MALLIK, A. K. Dynamics of a weakly non-linear periodic chain. International Journal of Non-Linear Mechanics, 36 (2), 375- 389 (2001)
|
25 |
NARISETTI, R. K., LEAMY, M. J., and RUZZENE, M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. Journal of Vibration and Acoustics, 132, 031001 (2010)
|
26 |
MANKTELOW, K., LEAMY, M. J., and RUZZENE, M. Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dynamics, 63, 193- 203 (2011)
|
27 |
WANG, Y. Z., LI, F. M., and WANG, Y. S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. International Journal of Mechanical Sciences, 106, 357- 362 (2016)
|
28 |
WANG, Y. Z., and WANG, Y. S. Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion, 78, 1- 8 (2018)
|
29 |
WANG, J., ZHOU, W., HUANG, Y., LYU, C., CHEN, W., and ZHU, W. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics (English Edition), 39 (8), 1059- 1070 (2018)
doi: 10.1007/s10483-018-2360-6
|
30 |
PANIGRAHI, S. R., FEENY, B. F., and DIAZ, A. R. Second-order perturbation analysis of low-amplitude traveling waves in a periodic chain with quadratic and cubic nonlinearity. Wave Motion, 69, 1- 15 (2017)
|
31 |
FRONK, M. D., and LEAMY, M. J. Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. Journal of Vibration and Acoustics, 139 (5), 051003 (2017)
|
32 |
ZIVIERI, R., GARESCI, F., AZZERBONI, B., CHIAPPINI, M., and FINOCCHIO, G. Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems. Journal of Sound and Vibration, 462, 114929 (2019)
|
33 |
SEPEHRI, S., MASHHADI, M. M., and FAKHRABADI, M. M. S. Manipulation of wave motion in smart nonlinear phononic crystals made of shape memory alloys. Physica Scripta, 96 (12), 125527 (2021)
|
34 |
SEPEHRI, S., MASHHADI, M. M., and FAKHRABADI, M. M. S. Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in-mass lattice chains. International Journal of Mechanical Sciences, 214, 106896 (2022)
|
35 |
FANG, L., and LEAMY, M. J. Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain. Physical Review E, 105 (1), 014203 (2022)
|
36 |
WATTIS, J. A. D. Approximations to solitary waves on lattices. Ⅲ: the monatomic lattice with second-neighbour interactions. Journal of Physics A: Mathematical and General, 29 (24), 8139 (1996)
|
37 |
ANDRIANOV, I. V., AWREJCEWICZ, J., and WEICHERT, D. Improved continuous models for discrete media. Mathematical Problems in Engineering, 2010, 986242 (2010)
|
38 |
ZHOU, Y., WEI, P., and TANG, Q. Continuum model of a one-dimensional lattice of metamaterials. Acta Mechanica, 227 (8), 2361- 2376 (2016)
|
39 |
HACHE, F., CHALLAMEL, N., ELISHAKOFF, I., and WANG, C. M. Comparison of nonlocal continualization schemes for lattice beams and plates. Archive of Applied Mechanics, 87, 1105- 1138 (2017)
|
40 |
GÓMEZ-SILVA, F., and ZAERA, R. Analysis of low order non-standard continualization methods for enhanced prediction of the dispersive behaviour of a beam lattice. International Journal of Mechanical Sciences, 196, 106296 (2021)
|
41 |
ANDRIANOV, I. V., STARUSHENKO, G. A., and WEICHERT, D. Numerical investigation of 1D continuum dynamical models of discrete chain. Zeitschrift für Angewandte Mathematik und Mechanik, 91 (11-12), 945- 954 (2012)
|
42 |
KEVREKIDIS, P. G., KEVREKIDIS, I. G., BISHOP, A. R., and TITI, E. S. Continuum approach to discreteness. Physical Review E, 65 (4), 046613 (2002)
|
43 |
ZABUSKY, N. J., and DEEM, G. S. Dynamics of nonlinear lattices, I: localized optical excitations, acoustic radiation, and strong nonlinear behavior. Journal of Computational Physics, 2 (2), 126- 153 (1967)
|
44 |
PORUBOV, A. V., and ANDRIANOV, I. V. Nonlinear waves in diatomic crystals. Wave Motion, 50 (7), 1153- 1160 (2013)
|
45 |
ASKAR, A. Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity, Vol. 2, World Scientific, Singapore (1986)
|
46 |
WATTIS, J. A. D. Solitary waves in a diatomic lattice: analytic approximations for a wide range of speeds by quasi-continuum methods. Physics Letters A, 284 (1), 16- 22 (2001)
|
47 |
VILA, J., FERNÁNDEZ-SÁEZ, J., and ZAERA, R. Nonlinear continuum models for the dynamic behavior of 1D microstructured solids. International Journal of Solids and Structures, 117, 111- 122 (2017)
|
48 |
ANDRIANOV, I. V., ZEMLYANUKHIN, A., BOCHKAREV, A., and EROFEEV, V. Steady solitary and periodic waves in a nonlinear nonintegrable lattice. Symmetry, 12 (10), 1608 (2020)
|
49 |
DE DOMENICO, D., ASKES, H., and AIFANTIS, E. C. Gradient elasticity and dispersive wave propagation: model motivation and length scale identification procedures in concrete and composite laminates. International Journal of Solids and Structures, 158, 176- 190 (2019)
|
50 |
ASKES, H., CARAMÉS-SADDLER, M., and RODRÍGUEZ-FERRAN, A Bipenalty method for time domain computational dynamics. Proceedings of the Royal Society A, 466 (2117), 1389- 1408 (2010)
|
51 |
NAYFEH, A. H., and MOOK, D. T. Nonlinear Oscillations, John Wiley & Sons, New York (2008)
|
52 |
HUSSEIN, M. I., LEAMY, M. J., and RUZZENE, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66 (4), 040802 (2014)
|
53 |
RAHMAN, Z., and BURTON, T. D. On higher order methods of multiple scales in non-linear oscillations-periodic steady state response. Journal of Sound and Vibration, 133 (3), 369- 379 (1989)
|