Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (6): 947-962.doi: https://doi.org/10.1007/s10483-024-3119-6
收稿日期:
2023-12-13
出版日期:
2024-06-03
发布日期:
2024-06-01
N. IQBAL, J. CHOI, S. F. SHAH, C. LEE, S. LEE*()
Received:
2023-12-13
Online:
2024-06-03
Published:
2024-06-01
Contact:
S. LEE
E-mail:sjunlee@dgu.ac.kr
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 947-962.
N. IQBAL, J. CHOI, S. F. SHAH, C. LEE, S. LEE. Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 947-962.
1 | DING, Y., CANO, Z. P., YU, A., LU, J., and CHEN, Z. Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2 (1), 1- 28 (2019) |
2 | LU, Z., MACNEIL, D. D., and DAHN, J. R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 4 (11), A191 (2001) |
3 | PARK, G. T., YOON, D. R., KIM, U. H., NAMKOONG, B., LEE, J., WANG, M. M., LEE, A. C., GU, X. W., CHUEH, W. C., YOON, C. S., and SUN, Y. K. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy & Environmental Science, 14 (12), 6616- 6626 (2021) |
4 | YABUUCHI,N., and OHZUKU, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 119-121, 171- 174 (2003) |
5 | GOODENOUGH,J. B., and PARK, K. S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 135 (4), 1167- 1176 (2013) |
6 | BOMMEL,A. V., and DAHN, J. R. Synthesis of spherical and dense particles of the pure hydroxide phase Ni1/3Mn1/3Co1/3(OH)2. Journal of The Electrochemical Society, 156 (5), A362 (2009) |
7 | BI, Y., TAO, J., WU, Y., LI, L., XU, Y., HU, E., WU, B., HU, J., WANG, C., ZHANG, J. G., QI, Y., and XIAO, J. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science, 370 (6522), 1313- 1317 (2020) |
8 | YAN, P., ZHENG, J., GU, M., XIAO, J., ZHANG, J. G., and WANG, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 8, 14101 (2017) |
9 | NIE, L., CHEN, S., and LIU, W. Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Research, 16 (1), 391- 402 (2022) |
10 | DE BIASI, L., KONDRAKOV, A. O., GEßWEIN, H., BREZESINSKI, T., HARTMANN, P., and JANEK, J. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. The Journal of Physical Chemistry C, 121 (47), 26163- 26171 (2017) |
11 | RYU, H. H., PARK, K. J., YOON, C. S., and SUN, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?. Chemistry of Materials, 30 (3), 1155- 1163 (2018) |
12 | LOU, S., LIU, Q., ZHANG, F., LIU, Q., YU, Z., MU, T., ZHAO, Y., BOROVILAS, J., CHEN, Y., GE, M., XIAO, X., LEE, W. K., YIN, G., YANG, Y., SUN, X., and WANG, J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nature Communications, 11 (1), 5700 (2020) |
13 | ALLEN, J. M., WEDDLE, P. J., VERMA, A., MALLARAPU, A., USSEGLIO-VIRETTA, F., FINEGAN, D. P., COLCLASURE, A. M., MAI, W., SCHMIDT, V., FURAT, O., DIERCKS, D., TANIM, T., and SMITH, K. Quantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models. Journal of Power Sources, 512, 230415 (2021) |
14 | LI, S., JIANG, Z., HAN, J., XU, Z., WANG, C., HUANG, H., YU, C., LEE, S. J., PIANETTA, P., OHLDAG, H., QIU, J., LEE, J. S., LIN, F., ZHAO, K., and LIU, Y. Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides. Nature Communications, 11 (1), 4433 (2020) |
15 | SUN, G., SUI, T., SONG, B., ZHENG, H., LU, L., and KORSUNSKY, A. M. On the fragmentation of active material secondary particles in lithium ion battery cathodes induced by charge cycling. Extreme Mechanics Letters, 9, 449- 458 (2016) |
16 | TIAN, H., GAO, L. T., and GUO, Z. S. Microstructural adjusting crack evolution of polycrystalline NCM particle during charge/discharge cycle. Journal of The Electrochemical Society, 169 (9), 090513 (2022) |
17 | ZHANG, Y., ZHAO, C., and GUO, Z. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. International Journal of Mechanical Sciences, 155, 178- 186 (2019) |
18 | XU, R., and ZHAO, K. Corrosive fracture of electrodes in Li-ion batteries. Journal of the Mechanics and Physics of Solids, 121, 258- 280 (2018) |
19 | SINGH,A., and PAL, S. Coupled chemo-mechanical modeling of fracture in polycrystalline cathode for lithium-ion battery. International Journal of Plasticity, 127, 102636 (2019) |
20 | TAGHIKHANI, K., WEDDLE, P. J., HOFFMAN, R. M., BERGER, J. R., and KEE, R. J. Electro-chemo-mechanical finite-element model of single-crystal and polycrystalline NMC cathode particles embedded in an argyrodite solid electrolyte. Electrochimica Acta, 460, 142585 (2023) |
21 | YUAN, C., LU, W., and XU, J. Electrochemical-mechanical coupling failure mechanism of composite cathode in all-solid-state batteries. Energy Storage Materials, 60, 102834 (2023) |
22 | WU, L., ZHANG, Y., JUNG, Y. G., and ZHANG, J. Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2. Journal of Power Sources, 299, 57- 65 (2015) |
23 | BAI, Y., ZHAO, K., LIU, Y., STEIN, P., and XU, B. X. A chemo-mechanical grain boundary model and its application to understand the damage of Li-ion battery materials. Scripta Materialia, 183, 45- 49 (2020) |
24 | TAGHIKHANI, K. J., WEDDLE, P., BERGER, J., and KEE, R. J. Modeling coupled chemo-mechanical behavior of randomly oriented NMC811 polycrystalline Li-ion battery cathodes. Journal of The Electrochemical Society, 168 (8), 080511 (2021) |
25 | LI, H., ZHOU, P., LIU, F., LI, H., CHENG, F., and CHEN, J. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chemical Science, 10 (5), 1374- 1379 (2019) |
26 | YOON, C. S., CHOI, M. J., JUN, D. W., ZHANG, Q., KAGHAZCHI, P., KIM, K. H., and SUN, Y. K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chemistry of Materials, 30 (5), 1808- 1814 (2018) |
27 | WU, F., ZHANG, X., ZHAO, T., LI, L., XIE, M., and CHEN, R. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Applied Materials & Interfaces, 7 (6), 3773- 3781 (2015) |
28 | HUANG, Y., CAO, S., XIE, X., WU, C., JAMIL, S., ZHAO, Q., CHANG, B., WANG, Y., and WANG, X. Improving the structure and cycling stability of Ni-rich layered cathodes by dual modification of yttrium doping and surface coating. ACS Applied Materials & Interfaces, 12 (17), 19483- 19494 (2020) |
29 | HOU, D., XU, Z., YANG, Z., KUAI, C., DU, Z., SUN, C. J., REN, Y., LIU, J., XIAO, X., and LIN, F. Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nature Communications, 13 (1), 3437 (2022) |
30 | WU, H., QIN, C., WANG, K., HAN, X., SUI, M., and YAN, P. Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy. Journal of Power Sources, 503, 230066 (2021) |
31 | BAO, W., QIAN, G., ZHAO, L., YU, Y., SU, L., CAI, X., ZHAO, H., ZUO, Y., ZHANG, Y., LI, H., PENG, Z., LI, L., and XIE, J. Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Letters, 20 (12), 8832- 8840 (2020) |
32 | FAN, X., HU, G., ZHANG, B., OU, X., ZHANG, J., ZHAO, W., JIA, H., ZOU, L., LI, P., and YANG, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy, 70, 104450 (2020) |
33 | JO, C. H., VORONINA, N., and MYUNG, S. T. Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: strategies, status, and challenges to improve energy density and cyclability. Energy Storage Materials, 51, 568- 587 (2022) |
34 | KALLURI, S., YOON, M., JO, M., PARK, S., MYEONG, S., KIM, J., DOU, S. X., GUO, Z., and CHO, J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Advanced Energy Materials, 7 (1), 1601507 (2017) |
35 | YANG, H., WU, H. H., GE, M., LI, L., YUAN, Y., YAO, Q., CHEN, J., XIA, L., ZHENG, J., CHEN, Z., DUAN, J., KISSLINGER, K., ZENG, X. C., LEE, W. K., ZHANG, Q., and LU, J. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Advanced Functional Materials, 29 (13), 1808825 (2019) |
36 | YAN, P., ZHENG, J., LIU, J., WANG, B., CHENG, X., ZHANG, Y., SUN, X., WANG, C., and ZHANG, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature Energy, 3 (7), 600- 605 (2018) |
37 | LIU, X., ZHOU, X., LIU, Q., DIAO, J., ZHAO, C., LI, L., LIU, Y., XU, W., DAALI, A., HARDER, R., ROBINSON, I. K., DAHBI, M., ALAMI, J., CHEN, G., XU, G. L., and AMINE, K. Multiscale understanding of surface structural effects on high-temperature operational resiliency of layered oxide cathodes. Advanced Materials, 34 (4), 2107326 (2022) |
38 | XU, G. L., LIU, Q., LAU, K. K. S., LIU, Y., LIU, X., GAO, H., ZHOU, X., ZHUANG, M., REN, Y., LI, J., SHAO, M., OUYANG, M., PAN, F., CHEN, Z., AMINE, K., and CHEN, G. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 4 (6), 484- 494 (2019) |
39 | IQBAL,N., and LEE, S. Mechanical failure analysis of graphite anode particles with PVDF binders in Li-ion batteries. Journal of The Electrochemical Society, 165 (9), A1961- A1970 (2018) |
40 | ZHANG, X., SHYY, W., and MARIE-ASTRY, A. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of The Electrochemical Society, 154 (10), A910 (2007) |
41 | IQBAL,N., and LEE, S. Anisotropic model to describe chemo-mechanical response of Ni-rich cathode materials. International Journal of Mechanical Sciences, 269, 109034 (2024) |
42 | WHEELER, J. The effects of stress on reactions in the earth: sometimes rather mean. usually normal, always important. Journal of Metamorphic Geology, 36 (4), 439- 461 (2018) |
43 | IQBAL, N., HAQ, I. U., and LEE, S. Chemo-mechanical model predicted critical SOCs for the mechanical stability of electrode materials in lithium-ion batteries. International Journal of Mechanical Sciences, 216, 107034 (2022) |
44 | HAN, S., PARK, J., LU, W., and SASTRY, A. M. Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials. Journal of Power Sources, 240, 155- 167 (2013) |
45 | XU, R., YANG, Y., YIN, F., LIU, P., CLOETENS, P., LIU, Y., LIN, F., and ZHAO, K. Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling. Journal of the Mechanics and Physics of Solids, 129, 160- 183 (2019) |
46 | KIM, D., FRANCO-GONZALEZ, J. F., and ZOZOULENKO, I. How long are polymer chains in poly(3, 4-ethylenedioxythiophene): tosylate films? an insight from molecular dynamics simulations. The Journal of Physical Chemistry B, 125 (36), 10324- 10334 (2021) |
47 | LANG, U., RUST, P., SCHOBERLE, B., and DUAL, J. Piezoresistive properties of PEDOT: PSS. Microelectronic Engineering, 86 (3), 330- 334 (2009) |
48 | QU, J., OUYANG, L., KUO, C., and MARTIN, D. C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomaterialia, 31, 114- 121 (2016) |
49 | ROHTLAID, K., NGUYEN, G. T. M., SOYER, C., CATTAN, E., VIDAL, F., and PLESSE, C. Poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors. Advanced Electronic Materials, 5 (4), 1800948 (2019) |
50 | SUN, H., and ZHAO, K. Electronic structure and comparative properties of Li(NixMnyCoz)O2 cathode materials. The Journal of Physical Chemistry C, 121 (11), 6002- 6010 (2017) |
51 | IQBAL, N., CHOI, J., LEE, C., AYUB, H. M. U., KIM, J., KIM, M., KIM, Y., MOON, D., and LEE, S. Effects of diffusion-induced nonlinear local volume change on the structural stability of NMC cathode materials of lithium-ion batteries. Mathematics, 10 (24), 4697 (2022) |
52 | WEI, Y., ZHENG, J., CUI, S., SONG, X., SU, Y., DENG, W., WU, Z., WANG, X., WANG, W., RAO, M., LIN, Y., WANG, C., AMINE, K., and PAN, F. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. Journal of the American Chemical Society, 137 (26), 8364- 8367 (2015) |
53 | HUANG, X., ZHU, W., YAO, J., BU, L., LI, X., TIAN, K., LU, H., QUAN, C., XU, S., XU, K., JIANG, Z., ZHANG, X., GAO, L., and ZHAO, J. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. Journal of Materials Chemistry A, 8 (34), 17429- 17441 (2020) |
54 | CHENG, E. J., HONG, K., TAYLOR, N. J., CHOE, H., WOLFENSTINE, J., and SAKAMOTO, J. Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC).. Journal of the European Ceramic Society, 37 (9), 3213- 3217 (2017) |
55 | MISTRY, A., JUAREZ-ROBLES, D., STEIN, M., SMITH, K., and MUKHERJEE, P. P. Analysis of long-range interaction in lithium-ion battery electrodes. Journal of Electrochemical Energy Conversion and Storage, 13 (3), 031006 (2016) |
56 | IQBAL, N., ALI, Y., and LEE, S. Chemo-mechanical response of composite electrode systems with multiple binder connections. Electrochimica Acta, 364, 137312 (2020) |
[1] | 曹志远;唐寿高;程国华. 复杂形状及开孔功能梯度板的三维分析[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(1): 13-18 . |
[2] | . Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with cylindrical hole[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(3): 367-378 . |
[3] | 朱永安, 王璠, 刘人怀. Thermal buckling of axisymmetrically laminated cylindrically orthotropic shallow spherical shells including transverse shear[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(3): 291-300 . |
[4] | . Reflection for three-dimensional plane waves in triclinic crystalline medium[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(10): 1309-1318 . |
[5] | 郭少华. EIGEN THEORY OF VISCOELASTIC DYNAMICS BASED ON THE KELVIN-VOIGT MODEL[J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(7): 792-798. |
[6] | Junjie SONG, Yixiong FENG, Yong WANG, Siyuan ZENG, Zhaoxi HONG, Hao QIU, Jianrong TAN. Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1619-1632. |
[7] | Pengyu PEI, Ming DAI. Elliptical inclusion in an anisotropic plane: non-uniform interface effects[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 667-688. |
[8] | M. H. B. M. SHARIFF, J. MERODIO, R. BUSTAMANTE. Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1515-1530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||