Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (8): 1403-1414.doi: https://doi.org/10.1007/s10483-024-3128-7
收稿日期:
2024-03-14
出版日期:
2024-08-03
发布日期:
2024-07-31
Dianwu HUANG1,*(), Linghui HE2
Received:
2024-03-14
Online:
2024-08-03
Published:
2024-07-31
Contact:
Dianwu HUANG
E-mail:dwhuang@ustc.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1403-1414.
Dianwu HUANG, Linghui HE. A theory for three-dimensional response of micropolar plates[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1403-1414.
1 | COSSERAT, E. and COSSERAT, F. Théorie des Corps Déformables, Herman et Fils, Paris (1909) |
2 | NOWACKI,W.Theory of Asymmetric Elasticity,Pergamon Press,Oxfor(1986) |
3 | ERINGEN,A. C.Microcontinuum Field Theory, I: Foundations and Solids,Springer,New York(1999) |
4 | JASIUK,I., andOSTOIA-STARZEWSKI,M.From Lattices and Composites to Micropolar Continua,Springer,Dordrecht(2004) |
5 | RUEGER,Z., andLAKES,R. S.Strong Cosserat elasticity in a transversely isotropic polymer lattice.Physical Review Letters,120,065501(2018) |
6 | YAO,Y.,NI,Y., andHE,L. H.Unexpected bending behavior of architected 2D lattice materials.Science Advances,9,3499(2023) |
7 | SRINIVASA,A. R., andREDDY,J. N.An overview of theories of continuum mechanics with nonlocal elastic response and a general framework for conservative and dissipative systems.Applied Mechanics Reviews,69(3),030802(2017) |
8 | ALTENBACH,H., andEREMEYEV,V.On the linear theory of micropolar plates.ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik,89(4),242-256(2009) |
9 | ERICKSEN,J. L., andTRUESDELL,C.Exact theory of stress and strain in rods and shells.Archive for Rational Mechanics and Analysis,1(4),295-323(1958) |
10 | GREEN,A. E.,NAGHDI,P. M., andWAINWRIGHT,W. L.A general theory of a Cosserat surface.Archive for Rational Mechanics and Analysis,20(4),287-308(1965) |
11 | GREEN,A. E., andNAGHDI,P. M.Linear theory of an elastic Cosserat plate.Proceedings of the Cambridge Philosophical Society-Mathematical and Physical Sciences,63(2),537-550(1967) |
12 | GREEN,A. E.,NAGHDI,P. M., andWENNER,M. L.Linear theory of Cosserat surface and elastic plates of variable thickness.Mathematical Proceedings of the Cambridge Philosophical Society,69(1),227-254(1971) |
13 | COHEN,H., andDESILVA,C. N.Nonlinear theory of elastic directed surfaces.Journal of Mathematical Physics,7(6),960-966(1966) |
14 | DESILVA,C. N., andTSAI,P. J.A general theory of directed surfaces.Acta Mechanica,18(1-2),89-101(1973) |
15 | REISSNER, E. Linear and nonlinear theory of shells. Thin-Shell Structures: Theory, Experiment, and Design, Prentice-Hall, New Jersey, 29–44 (1974) |
16 | NAGHDI,P. M., andRUBIN,M. B.Restrictions on nonlinear constitutive-equations for elastic shells.Journal of Elasticity,39(2),133-163(1995) |
17 | CHRÓŚCIELEWSKI,J., andWITKOWSKI,W.On some constitutive equations for micropolar plates.ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik,90(1),53-64(2010) |
18 | ERINGEN,A. C.Theory of micropolar plates.Zeitschrift für Angewandte Mathematik und Physik,18(1),12-30(1967) |
19 | GEVORKYAN,G. A.The basic equations of flexible plates for a medium of Cosserat.International Applied Mechanics,3(11),41-45(1967) |
20 | REISSNER,E.A note on pure bending and flexure in plane stress including the effect of moment stresses.Ingenieur-Archiv,39(6),369-374(1970) |
21 | STEINBERG,L., andKVASOV,R.Enhanced mathematical model for Cosserat plate bending.Thin-Walled Structures,63,51-62(2013) |
22 | ZOZULYA,V. V.Higher order theory of micropolar plates and shells.ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik,98(6),886-918(2018) |
23 | SARGSYAN,A., andSARGSYAN,S.Geometrically nonlinear models of static deformation of micropolar elastic thin plates and shallow shells.ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik,101(5),e202000148(2021) |
24 | CARRERA,E., andZOZULYA,V. V.Carrera unified formulation for the micropolar plates.Mechanics of Advanced Materials and Structures,29(22),3163-3186(2022) |
25 | FARES,M. E.,SALEM,M. G.,ATTA,D., andELMARGHANY,M. K.Mixed variational principle for micropolar elasticity and an accuratetwo-dimensional plate model.European Journal of Mechanics/A Solids,99,104870(2023) |
26 | NAMPALLY,P.,KARTTUNEN,A. T., andREDDY,J. N.Nonlinear finite element analysis of lattice core sandwich plates.International Journal of Non-Linear Mechanics,121,103423(2020) |
27 |
GHARAHI,A.Boundary value problems in a theory of bending of thin micropolar plates with surface elasticity.Journal of Elasticity,(2024)
doi: 10.1007/s10659-024-10051-2 |
28 | ERBAY,H. A.An asymptotic theory of thin micropolar plates.International Journal of Engineering Science,38(13),1497-1516(2000) |
29 | SARGSYAN,S. O.Boundary-value problems of the asymmetric theory of elasticity for thin plates.Journal of Applied Mathematics and Mechanics,72(1),77-86(2008) |
30 | AGANOVIĆ,I.,TAMBAČA,J., andTUTEK,Z.Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity.Journal of Elasticity,84,131-152(2006) |
31 | ROGERS,T. G.,WASTON,P., andSPENCER,J. M.An exact three-dimensional solution for normal loading of inhomogeneous and laminated anisotropic elastic plates of moderate thickness.Proceedings of the Royal Society of London: Series A,437,199-213(1992) |
32 | HE,L. H.,LIM,C. W., andSOH,A. K.Three-dimensional analysis of an antiparallel piezoelectric bimorph.Acta Mechanica,145(1-4),189-204(2000) |
33 | GAUTHIER,R. D., andJAHSMAN,W. E.A quest for micropolar elastic constants.Journal of Applied Mechanics-Transactions of the ASME,42(2),369-374(1975) |
34 | LAKES,R. S.Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as Cosserat continua.Journal of Engineering Materials and Technology-Transactions of the ASME,113(1),148-155(1991) |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2075-2092. |
[2] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1987-2010. |
[3] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964. |
[4] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1895-1912. |
[5] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1807-1820. |
[6] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1749-1772. |
[7] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1595-1612. |
[8] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1539-1556. |
[9] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1295-1314. |
[10] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1155-1170. |
[11] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1107-1118. |
[12] | Shuo WANG, Anshuai WANG, Yansen WU, Xiaofeng LI, Yongtao SUN, Zhaozhan ZHANG, Qian DING, G. D. AYALEW, Yunxiang MA, Qingyu LIN. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1261-1278. |
[13] | Yiming CAO, Hui MA, Xumin GUO, Bingfeng ZHAO, Hui LI, Xin WANG, Bing WANG. Comparison of nonlinear modeling methods for the composite rubber clamp[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 763-778. |
[14] | Lele REN, Wei ZHANG, Ting DONG, Yufei ZHANG. Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell:an experimental and numerical study[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 779-794. |
[15] | Jinghu TANG, Chaofeng LI, Jin ZHOU, Zhiwei WU. Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 873-890. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||