Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (9): 1573-1594.doi: https://doi.org/10.1007/s10483-024-3140-7
收稿日期:
2024-04-29
出版日期:
2024-09-01
发布日期:
2024-08-27
Zhenliang HU1, Xueyang ZHANG2, Xianfang LI2,*()
Received:
2024-04-29
Online:
2024-09-01
Published:
2024-08-27
Contact:
Xianfang LI
E-mail:xfli@csu.edu.cn
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1573-1594.
Zhenliang HU, Xueyang ZHANG, Xianfang LI. Bending strength degradation of a cantilever plate with surface energy due to partial debonding at the clamped boundary[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1573-1594.
1 | SUN, G., PANG, J. H., ZHOU, J., ZHANG, Y., ZHAN, Z., and ZHENG, L. A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects. Applied Physics Letters, 101, 131905 (2012) |
2 | LU, N., SUO, Z., and VLASSAK, J. J. The effect of film thickness on the failure strain of polymer-supported metal films. Acta Materialia, 58, 1679- 1687 (2010) |
3 | FRANK, I., TANENBAUM, D. M., VAN DER ZANDE, A. M., and MCEUEN, P. L. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science and Technology B, 25, 2558- 2561 (2007) |
4 | LEE, C., WEI, X., KYSAR, J. W., and HONE, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385- 388 (2008) |
5 | BEYERLEIN, I. J., LI, Z., and MARA, N. A. Mechanical properties of metal nanolaminates. Annual Review of Materials Research, 52, 281- 304 (2022) |
6 | LIN, C., NICAISE, S. M., LILLEY, D. E., CORTES, J., JIAO, P., SINGH, J., AZADI, M., LOPEZ, G. G., METZLER, M., PUROHIT, P. K., and BARGATIN, I. Nanocardboard as a nanoscale analog of hollow sandwich plates. Nature Communications, 9, 4442 (2018) |
7 | TALONI, A., VODRET, M., COSTANTINI, G., and ZAPPERI, S. Size effects on the fracture of microscale and nanoscale materials. Nature Review Materials, 3, 211- 224 (2018) |
8 | LY, T. H., ZHAO, J., CICHOCKA, M. O., LI, L. J., and LEE, Y. H. Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nature Communications, 8, 14116 (2017) |
9 | YANG, Y., SONG, Z., LU, G., ZHANG, Q., ZHANG, B., NI, B., WANG, C., LI, X., GU, L., XIE, X. M., GAO, H. J., and LOU, J. Intrinsic toughening and stable crack propagation in hexagonal boron nitride. nature, 594, 57- 61 (2021) |
10 | VELLINGA, W., DE HOSSON, J. T. M., and BOUTEN, P. Effect of relative humidity on crack propagation in barrier films for flexible electronics. Journal of Applied Physics, 112, 083520 (2012) |
11 | DELRIO, F. W., COOK, R. F., and BOYCE, B. L. Fracture strength of micro- and nano-scale silicon components. Applied Physics Reviews, 2, 021303 (2015) |
12 | ZHAO, X., MAO, B., LIU, M., CAO, J., HAIGH, S. J., PAPAGEORGIOU, D. G., LI, Z., and YOUNG, R. J. Controlling and monitoring crack propagation in monolayer graphene single crystals. Advanced Functional Materials, 32, 2202373 (2022) |
13 | ZHANG, Z., ZHANG, X., WANG, Y., WANG, Y., ZHANG, Y., XU, C., ZOU, Z., WU, Z., XIA, Y., ZHAO, P., WANG, P., and TAO, H. Crack propagation and fracture toughness of graphene probed by Raman spectroscopy. ACS Nano, 13, 10327- 10332 (2019) |
14 | CAO, C., MUKHERJEE, S., HOWE, J. Y., PEROVIC, D. D., SUN, Y., SINGH, C. V., and FILLETER, T. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Science Advances, 4, 7202 (2018) |
15 | NAN, H. S., and WANG, B. L. Effect of interface stress on the fracture behavior of a nanoscale linear inclusion along the interface of bimaterials. International Journal of Solids and Structures, 51, 4094- 4100 (2014) |
16 | TAN, Z. Q., and CHEN, Y. C. Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by Joule heating using the modified couple stress theory. Composites Part B: Engineering, 161, 183- 189 (2019) |
17 | YANG, W., CHEN, J., ZHU, G., WEN, X., BAI, P., SU, Y., LIN, Y., and WANG, Z. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 6, 880- 886 (2013) |
18 | SHEKHAWAT, G. S., and DRAVID, V. P. Microcantilevers to lift biomolecules. Nature Nanotechnology, 10, 830- 831 (2015) |
19 | ZHANG, G., LI, C., WU, S., and ZHANG, Q. Label-free aptamer-based detection of microcystin-LR using a microcantilever array biosensor. Sensors and Actuators B: Chemical Sensors and Materials, 260, 42- 47 (2018) |
20 | BASU, A. K., BASU, A., and BHATTACHARYA, S. Micro/nano fabricated cantilever based biosensor platform: a review and recent progress. Enzyme and Microbial Technology, 139, 109558 (2020) |
21 | LACHUT, M. J., and SADER, J. E. Effect of surface stress on the stiffness of cantilever plates. Physical Review Letters, 99, 206102 (2007) |
22 | LACHUT, M. J., and SADER, J. E. Buckling of a cantilever plate uniformly loaded in its plane with applications to surface stress and thermal loads. Journal of Applied Physics, 113, 024501 (2013) |
23 | SADEGHIAN, H., GOOSEN, J., BOSSCHE, A., and VAN KEULEN, F. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates. Applied Physics Letters, 94, 231908 (2009) |
24 | ZENG, X., DENG, J., and LUO, X. Deflection of a cantilever rectangular plate induced by surface stress with applications to surface stress measurement. Journal of Applied Physics, 111, 083531 (2012) |
25 | ZHU, H. X. Size-dependent elastic properties of micro- and nano-honeycombs. Journal of the Mechanics and Physics of Solids, 58, 696- 709 (2010) |
26 | LU, L., GUO, X., and ZHAO, J. On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. International Journal of Engineering Science, 124, 24- 40 (2018) |
27 | LU, L., GUO, X., and ZHAO, J. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appllied Mathematical Modelling, 68, 583- 602 (2019) |
28 | CORDERO, N. M., FOREST, S., and BUSSO, E. P. Second strain gradient elasticity of nano-objects. Journal of the Mechanics and Physics of Solids, 97, 92- 124 (2016) |
29 | XIAO, Q. X., and LI, X. F. Flutter and divergence instability of rectangular plates under nonconservative forces considering surface elasticity. International Journal of Mechanical Sciences, 149, 254- 261 (2018) |
30 | ZHANG, B., LI, H., LIU, J., SHEN, H., and ZHANG, X. Surface energy-enriched gradient elastic Kirchhoff plate model and a novel weak-form solution scheme. European Journal of Mechanics A: Solids, 85, 104118 (2021) |
31 | DENG, T., ZHANG, B., LIU, J., SHEN, H., and ZHANG, X. Vibration frequency and mode localization characteristics of strain gradient variable-thickness microplates. Thin-Walled Structures, 199, 111779 (2024) |
32 | HU, Z. L., LEE, K. Y., and LI, X. F. Crack in an elastic thin-film with surface effect. International Journal of Engineering Science, 123, 158- 173 (2018) |
33 | HU, Z. L., YANG, Y., and LI, X. F. Singular elastic field induced by a rigid line inclusion in a thin nanoplate with surface elasticity. International Journal of Mechanical Sciences, 198, 106386 (2021) |
34 | HU, Z. L., ZHANG, X. Y., and LI, X. F. Oscillatory singularity for bending of a partially clamped nanoplate with consideration of surface effect. Engineering Fracture Mechanics, 290, 109495 (2023) |
35 | TIMOSHENKO, S. and WOINOWSKY-KRIGER, S. Theory of Plates and Shells, McGraw-Hill Book Company, New York (1959) |
36 | GURTIN, M. E., and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291- 323 (1975) |
37 | GURTIN, M. E., and MURDOCH, A. I. Surface stress in solids. International Journal of Solids and Structures, 14, 431- 440 (1978) |
38 | HU, Z. L., YANG, Y., ZHANG, X. Y., and LI, X. F. Bending of a nanoplate with strain-dependent surface stress containing two collinear through cracks. Meccanica, 57, 1937- 1954 (2022) |
39 | MUSKHELISHVILI, I. N. Singular Integral Equations, Noordhoff Ltd., Groningen (1953) |
40 | GRADSHTEYN, I. S., and RYZHIK, I. M. Table of Integrals, Series, and Products, Academic Press, New York (2014) |
41 | WILLIAMS, M. L. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America, 49, 199- 204 (1959) |
42 | RICE, J. R., and SIH, G. C. Plane problems of cracks in dissimilar media. Journal of Applied Mechanics: Transactions of the ASME, 32, 418- 423 (1965) |
43 | WANG, X., and SCHIAVONE, P. Interface cracks in Kirchhoff anisotropic thin plates of dissimilar materials. Journal of Applied Mechanics: Transactions of the ASME, 80, 041025 (2013) |
44 | HU, K., FU, J., CHEN, Z., and GAO, C. F. Interface crack between dissimilar thin-films with surface effect. Zeitschrift für Angewandte Mathematik und Physik, 73, 104 (2022) |
45 | ZHANG, H. Ultrathin two-dimensional nanomaterials. ACS Nano, 9, 9451- 9469 (2015) |
46 | GLUDOVATZ, B., NALEWAY, S. E., RITCHIE, R. O., and KRUZIC, J. J. Size-dependent fracture toughness of bulk metallic glasses. Acta Materialia, 70, 198- 207 (2014) |
47 | SRIVASTAVA, A., GUPTA, V., YERRAMALLI, C., and SINGH, A. Flexural strength enhancement in carbon-fiber epoxy composites through graphene nano-platelets coating on fibers. Composites Part B: Engineering, 179, 107539 (2019) |
[1] | Zhina ZHAO, Junhong GUO. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 625-640. |
[2] | Yongbin WANG, Junhong GUO. Effective electroelastic constants for three-phase confocal elliptical cylinder model in piezoelectric quasicrystal composites[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(6): 797-812. |
[3] | Yongan ZHU, Fan WANG, Renhuai LIU. Nonlinear stability of sensor elastic element—corrugated shallow spherical shell in coupled multi-field[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(6): 877-888. |
[4] | M. MOHAMMADIMEHR, M. J. FARAHI, S. ALIMIRZAEI. Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(10): 1375-1392. |
[5] | Jian WU, C. Q. RU, Liang ZHANG, Ling WAN. Geometrical shape of in-plane inclusion characterized by polynomial internal stress field under uniform eigenstrains[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(9): 1113-1130. |
[6] | A. KOOCHI, H. HOSSEINI-TOUDESHKY, M. ABADYAN. Nonlinear beam formulation incorporating surface energy and size effect: application in nano-bridges[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(5): 583-600. |
[7] | R. KUMAR;M.KAUR;S. C. RAJVANSHI. Wave propagation at interface of heat conducting micropolar solid and fluid media[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(7): 881-902. |
[8] | 刘又文 谢超 江纯志 方棋洪. Analytical solution for a strained reinforcement layer bonded to lip-shaped crack under remote mode III uniform load and concentrated load[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(09): 1125-1140. |
[9] | Rajneesh KUMAR Meenakshi PANCHAL. Response of loose bonding on reflection and transmission of elastic waves at interface between elastic solid and micropolar porous cubic crystal[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(5): 605-616. |
[10] | C.W.LIM. On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(1): 37-54. |
[11] | 刘又文;李博;方棋洪. 各向异性双材料中运动螺型位错与界面刚性线的干涉[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(5): 625-638 . |
[12] | 李丹;胡更开 . Effective viscoelastic behavior of particulate polymer composites at finite concentration[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(3): 297-297 . |
[13] | 戴天民. Renewal of basic laws and principles for polar continuum theories (XI)---consistency problems[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(2): 163-172 . |
[14] | 方棋洪;刘又文. ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(9): 1239-1247 . |
[15] | . DEFORMATION DUE TO TIME HARMONIC SOURCES IN MICROPOLAR THERMOELASTIC MEDIUM POSSESSING CUBIC SYMMETRY WITH TWO RELAXATION TIMES[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(6): 781-792 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||