[1] |
NAN, C. W., BICHURIN, M. I., DONG, S. X., VIEHLAND, D., and SRINIVASAN, G.Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics, 103(3), 031101 (2008)
|
[2] |
KALININ, S. V., KARAPETIAN, E., and KACHANOV, M.Nanoelectromechanics of piezoresponse force microscopy. Physical Review B, 70(18), 184101 (2004)
|
[3] |
KARAPETIAN, E., KACHANOV, M., and KALININ, S. V.Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Philosophical Magazine, 85(10), 1017–1051 (2005)
|
[4] |
CHEN, W. Q., PAN, E. N., WANG, H. M., and ZHANG, C. Z.Theory of indentation on multiferroic composite materials. Journal of the Mechanics and Physics of Solids, 58(10), 1524–1551 (2010)
|
[5] |
LI, X. Y., WU, F., JIN, X., and CHEN, W. Q.3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Journal of the Mechanics and Physics of Solids, 75, 1–44 (2015)
|
[6] |
WU, F., LI, X. Y., CHEN, W. Q., KANG, G. Z., and MÜLLER, R.Indentation on a transversely isotropic half-space of multiferroic composite medium with a circular contact region. International Journal of Engineering Science, 123, 236–289 (2018)
|
[7] |
ELLOUMI, R., KALLEL-KAMOUN, I., EL-BORGI, S., and GULER, M. A.On the frictional sliding contact problem between a rigid circular conducting punch and a magneto-electro-elastic half-plane. International Journal of Mechanical Sciences, 87, 1–17 (2014)
|
[8] |
ZHANG, X., WANG, Z. J., SHEN, H. M., and WANG, Q. J.Frictional contact involving a multiferroic thin film subjected to surface magnetoelectroelastic effects. International Journal of Mechanical Sciences, 131-132, 633–648 (2017)
|
[9] |
WU, F., WU, T. H., and LI, X. Y.Indentation theory on a half-space of transversely isotropic multi-ferroic composite medium: sliding friction effect. Smart Materials and Structures, 27(3), 035005 (2018)
|
[10] |
ZHANG, H. B., WANG, W. Z., LIU, Y. Q., and ZHAO, Z. Q.Semi-analytic modelling of transversely isotropic magneto-electro-elastic materials under frictional sliding contact. Applied Mathematical Modelling, 75, 116–140 (2019)
|
[11] |
ZHOU, Y. T. and LEE, K. Y.Contact problem for magneto-electro-elastic half-plane materials indented by a moving punch, part II: numerical results. International Journal of Solids and Structures, 49(26), 3866–3882 (2012)
|
[17] |
WU, F. and LI, C.Partial slip contact problem between a transversely isotropic half-space of multi-ferroic composite medium and a spherical indenter. Mechanics of Materials, 161, 104018 (2021)
|
[18] |
WU, F., LI, X. Y., ZHENG, R. F., and KANG, G. Z.Theory of adhesive contact on multi-ferroic composite materials: spherical indenter. International Journal of Engineering Science, 134, 77–116 (2019)
|
[19] |
WU, F. and LI, C.Theory of adhesive contact on multi-ferroic composite materials: conical indenter. International Journal of Solids and Structures, 233, 111217 (2021)
|
[20] |
GRIERSON, D. S., LIU, J. J., CARPICK, R. W., and TURNER, K. T.Adhesion of nanoscale asperities with power-law profiles. Journal of the Mechanics and Physics of Solids, 61(2), 597–610 (2013)
|
[21] |
BORODICH, F. M., GALANOV, B. A., and SUAREZ-ALVAREZ, M. M.The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. Journal of the Mechanics and Physics of Solids, 68, 14–32 (2014)
|
[22] |
WU, J. J.Numerical analysis on the adhesive contact between a rigid power-law shaped axisymmetric asperity and an elastic half-space. Journal of Adhesion Science and Technology, 36(2), 195–219 (2022)
|
[23] |
LUO, Q. H., ZHOU, Y. T., YANG, Y. X., DING, S. H., and WANG, L. H.The adjustable adhesion strength of multiferroic composite materials via electromagnetic loadings and shape effect of punch. Journal of the Mechanics and Physics of Solids, 192, 105794 (2024)
|
[24] |
WU, F., ZHANG, S. B., LI, C., and LI, X. Y.Modulating adhesion strength in multi-ferroic composite materials: insights from adhesive contact with arbitrary profile indenters. International Journal of Solids and Structures, 292, 112721 (2024)
|
[25] |
MERGEL, J. C., SAHLI, R., SCHEIBERT, J., and SAUER, R. A.Continuum contact models for coupled adhesion and friction. The Journal of Adhesion, 95(12), 1101–1133 (2018)
|
[26] |
PENG, B., LI, Q. Y., FENG, X. Q., and GAO, H. J.Effect of shear stress on adhesive contact with a generalized Maugis-Dugdale cohesive zone model. Journal of the Mechanics and Physics of Solids, 148, 104275 (2021)
|
[27] |
KRICK, B. A., VAIL, J. R., PERSSON, B. N. J., and SAWYER, W. G.Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribology Letters, 45(1), 185–194 (2012)
|
[28] |
WATERS, J. F. and GUDURU, P. R.Mode-mixity-dependent adhesive contact of a sphere on a plane surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2117), 1303–1325 (2010)
|
[29] |
PAPANGELO, A. and CIAVARELLA, M.On mixed-mode fracture mechanics models for contact area reduction under shear load in soft materials. Journal of the Mechanics and Physics of Solids, 124, 159–171 (2019)
|
[30] |
MENGA, N., CARBONE, G., and DINI, D.Do uniform tangential interfacial stresses enhance adhesion?Journal of the Mechanics and Physics of Solids, 112, 145–156 (2018)
|
[31] |
MENGA, N., CARBONE, G., and DINI, D.Corrigendum to “Do uniform tangential interfacial stresses enhance adhesion?” [Journal of the Mechanics and Physics of Solids 112 (2018) 145–156]. Journal of the Mechanics and Physics of Solids, 133, 103744 (2019)
|
[32] |
KIM, K. S., MCMEEKING, R. M., and JOHNSON, K. L.Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact. Journal of the Mechanics and Physics of Solids, 46(2), 243–266 (1998)
|
[33] |
MCMEEKING, R. M., CIAVARELLA, M., CRICRÌ, G., and KIM, K. S.The interaction of frictional slip and adhesion for a stiff sphere on a compliant substrate. Journal of Applied Mechanics, 87(3), 031016 (2020)
|
[34] |
SATO, T., MILNE, Z. B., NOMURA, M., SASAKI, N., CARPICK, R. W., and FUJITA, H.Ultrahigh strength and shear-assisted separation of sliding nanocontacts studied in situ. Nature Communications, 13(1), 2551 (2022)
|
[35] |
CHEN, S. and GAO, H.Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2065), 211–228 (2006)
|
[36] |
GUO, X. and JIN, F.A generalized JKR-model for two-dimensional adhesive contact of transversely isotropic piezoelectric half-space. International Journal of Solids and Structures, 46(20), 3607–3619 (2009)
|
[12] |
ZHANG, X., WANG, Z. J., SHEN, H. M., and WANG, Q. J.Dynamic contact in multiferroic energy conversion. International Journal of Solids and Structures, 143, 84–102 (2018)
|
[13] |
ZHOU, Y. T. and KIM, T. W.Constructing potentials to evaluate magneto-electro-elastic materials in contact with periodically rough surface. European Journal of Mechanics-A/Solids, 53, 89–98 (2015)
|
[14] |
ZHOU, Y. T. and KIM, T. W.Role of rough surface on contact between magneto-electro-elastic materials and orthotropic solid. International Journal of Mechanical Sciences, 99, 187–195 (2015)
|
[15] |
ÇÖMEZ, İ.Thermoelastic contact problem of a magneto-electro-elastic layer indented by a rigid insulating punch. Mechanics of Advanced Materials and Structures, 29(28), 7231–7245 (2021)
|
[16] |
MA, J., KE, L. L., WANG, Y. S., and AIZIKOVICH, S. M.Thermal contact of magneto-electro-elastic materials subjected to a conducting flat punch. The Journal of Strain Analysis for Engineering Design, 50(7), 513–527 (2015)
|
[37] |
TING, T. C. T.Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York (1996)
|
[38] |
LEI, J. and ZHANG, C. Z.On the generalized Barnett-Lothe tensors for anisotropic magnetoelectroelastic materials. European Journal of Mechanics-A/Solids, 46, 12–21 (2014)
|
[39] |
YAO, H., CHEN, S., GUDURU, P. R., and GAO, H.Orientation-dependent adhesion strength of a rigid cylinder in non-slipping contact with a transversely isotropic half-space. International Journal of Solids and Structures, 46(5), 1167–1175 (2009)
|
[40] |
JIN, F. and GUO, X.Non-slipping adhesive contact of a rigid cylinder on an elastic power-law graded half-space. International Journal of Solids and Structures, 47(11-12), 1508–1521 (2010)
|
[41] |
YAO, H. M.A generalized model for adhesive contact between a rigid cylinder and a transversely isotropic substrate. Journal of Applied Mechanics, 80(1), 011027 (2013)
|