Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (8): 1433-1450.doi: https://doi.org/10.1007/s10483-025-3282-9
收稿日期:2025-01-19
修回日期:2025-06-09
发布日期:2025-07-28
Qinghua ZHU1, Fang HAN2,3,†(
), Qingyun WANG2,4
Received:2025-01-19
Revised:2025-06-09
Published:2025-07-28
Contact:
Fang HAN
E-mail:yadiahan@dhu.edu.cn
Supported by:中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1433-1450.
Qinghua ZHU, Fang HAN, Qingyun WANG. A spinal circuit model with an asymmetric cervical-lumbar layout for limb coordination and gait control in quadrupeds[J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1433-1450.
"
| Parameter | Value |
|---|---|
| Membrane capacitance | |
| Maximal conductance | |
| Reversal potential | |
| Threshold/maximum voltage | |
| Half-voltage | |
| Slope | |
| Time constant |
"
| Scope | Source | Target ( |
|---|---|---|
| Within cervical and lumber circuits | F | E (0.01), V2b (4.0), V3 (3.5), |
| E | F (0.01), V1 (4.0), Sh2 (5.0), CINi (4.0) | |
| V1 | F | |
| V2b | E | |
| CINi | F | |
| V3 | F (0.3) | |
| Within cervical circuits | c-F | LPNi (7.0), IIV2a-diag (5.0), |
| c-F | ||
| IIV2a-diag | ||
| Within lumber circuits | l-F | IV2a (10.0), IV2a-diag (5.0) |
| IV2a | ||
| InI (6.0) | ||
| InI | l-F | |
| l-F | ||
| IV2a-diag | ||
| Between cervical-lumber homolateral circuits | c-Sh2 | l-F (0.1) |
| l-Sh2 | c-F (1.25) | |
| LPNi | l-F | |
| Between cervical-lumber diagonal circuits | l-F | |
| c- | l-F (0.2) | |
| l- | c-F (0.1) |
"
| Gait | Left-right fore | Left-right hind | Homolateral | Diagonal |
|---|---|---|---|---|
| Walk | [0.25,0.75] | [0.25,0.75] | [0.1,0.4)/(0.6,0.9] | [0.1,0.4)/(0.6,0.9] |
| Trot | [0.25,0.75] | [0.25,0.75] | [0.25,0.75] | [0.0,0.1]/[0.9,1.0] |
| Gallop | [0.25,0.75] | (0.0,0.25]/[0.75,1.0) | [0.25,0.75] | (0.15,0.4)/(0.6,0.85) |
| Bound | [0.0,0.025]/(0.975,1.0] | [0.0,0.025]/(0.975,1.0] | [0.25,0.75] | [0.25,0.75] |
| [1] | BATKA, R. J., BROWN, T. J., MCMILLAN, K. P., MEADOWS, R. M., JONES, K. J., and HAULCOMB, M. M. The need for speed in rodent locomotion analyses. Anatomical Record, 297(10), 1839–1864 (2014) |
| [2] | BELLARDITA, C. and KIEHN, O. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Current Biology, 25(11), 1426–1436 (2015) |
| [3] | LEIRAS, R., CREGG, J. M., and KIEHN, O. Brainstem circuits for locomotion. Annual Review of Neuroscience, 45, 63–85 (2022) |
| [4] | BROCARD, F. New channel lineup in spinal circuits governing locomotion. Current Opinion in Physiology, 8, 14–22 (2019) |
| [5] | GRILLNER, S. and EL MANIRA, A. Current principles of motor control, with special reference to vertebrate locomotion. Physiological Reviews, 100, 271–320 (2020) |
| [6] | WILSON, A. C. and SWEENEY, L. B. Spinal cords: symphonies of interneurons across species. Frontiers in Neural Circuits, 17, 1146449 (2023) |
| [7] | CAGGIANO, V., LEIRAS, R., GOÑI-ERRO, H., MASINI, D., BELLARDITA, C., BOUVIER, J., CALDEIRA, V., FISONE, G., and KIEHN, O. Midbrain circuits that set locomotor speed and gait selection. nature, 553(7689), 455–460 (2018) |
| [8] | JOSSET, N., ROUSSEL, M., LEMIEUX, M., LAFRANCE-ZOUBGA, D., RASTQAR, A., and BRETZNER, F. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Current Biology, 28(6), 884–901 (2018) |
| [9] | VERNEUIL, J., BROCARD, C., TROUPLIN, V., VILLARD, L., PEYRONNET-ROUX, J., and BROCARD, F. The M-current works in tandem with the persistent sodium current to set the speed of locomotion. PLoS Biology, 18(1), e3000738 (2020) |
| [10] | DROUILLAS, B., BROCARD, C., ZANELLA, S., BOS, R., and BROCARD, F. Persistent Nav1.1 and Nav1.6 currents drive spinal locomotor functions through nonlinear dynamics. Cell Reports, 42, 113085 (2023) |
| [11] | SVENSSON, E., WILLIAMS, M. J., and SCHIÖTH, H. B. Neural cotransmission in spinal circuits governing locomotion. Trends in Neurosciences, 41(8), 540–555 (2018) |
| [12] | CÔTÉ, M. P., MURRAY, L. M., and KNIKOU, M. Spinal control of locomotion: individual neurons, their circuits and functions. Frontiers in Physiology, 9, 784 (2018) |
| [13] | HAQUE, F. and GOSGNACH, S. Mapping connectivity amongst interneuronal components of the locomotor CPG. Frontiers in Cellular Neuroscience, 13, 443 (2019) |
| [14] | TALPALAR, A. E., BOUVIER, J., BORGIUS, L., FORTIN, G., PIERANI, A., and KIEHN, O. Dual-mode operation of neuronal networks involved in left-right alternation. nature, 500(7460), 85–88 (2013) |
| [15] | KIEHN, O. Decoding the organization of spinal circuits that control locomotion. Nature Reviews Neuroscience, 17(4), 224–238 (2016) |
| [16] | GRILLNER, S. and KOZLOV, A. The CPGs for limbed locomotion-facts and fiction. International Journal of Molecular Sciences, 22(11), 5882 (2021) |
| [17] | FRIGON, A. The neural control of interlimb coordination during mammalian locomotion. Journal of Neurophysiology, 117(6), 2224–2241 (2017) |
| [18] | RUDER, L., TAKEOKA, A., and ARBER, S. Long-distance descending spinal neurons ensure quadrupedal locomotor stability. Neuron, 92(5), 1063–1078 (2016) |
| [19] | POCRATSKY, A. M., SHEPARD, C. T., MOREHOUSE, J. R., BURKE, D. A., RIEGLER, A. S., HARDIN, J. T., BEARE, J. E., HAINLINE, C., STATES, G. J., BROWN, B. L., WHITTEMORE, S. R., and MAGNUSON, D. S. Long ascending propriospinal neurons provide flexible, context-specific control of interlimb coordination. eLife, 9, e53565 (2020) |
| [20] | ZHANG, J., LANUZA, G. M., BRITZ, O., WANG, Z., SIEMBAB, V. C., ZHANG, Y., VELASQUEZ, T., ALVAREZ, F. J., FRANK, E., and GOULDING, M. V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron, 82(1), 138–150 (2014) |
| [21] | CABELGUEN, J. M., ORSAL, D., PERRET, C., and ZATTARA, M. Central pattern generation of forelimb and hindlimb locomotor activities in the cat. Advances in Physiology Education, 1, 199–211 (1980) |
| [22] | HAYASHI, M., HINCKLEY, C. A., DRISCOLL, S. P., MOORE, N. J., LEVINE, A. J., HILDE, K. L., SHARMA, K., and PFAFF, S. L. Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control. Neuron, 97(4), 869–884 (2018) |
| [23] | CRONE, S. A., ZHONG, G., HARRIS-WARRICK, R., and SHARMA, K. In mice lacking V2a interneurons, gait depends on speed of locomotion. The Journal of Neuroscience, 29(21), 7098–7109 (2009) |
| [24] | AZIM, E., JIANG, J., ALSTERMARK, B., and JESSELL, T. M. Skilled reaching relies on a V2a propriospinal internal copy circuit. nature, 508(7496), 357–363 (2014) |
| [25] | ZELENIN, P. V., VEMULA, M. G., LYALKA, V. F., KIEHN, O., TALPALAR, A. E., and DELIAGINA, T. G. Differential contribution of V0 interneurons to execution of rhythmic and nonrhythmic motor behaviors. The Journal of Neuroscience, 41(15), 3432–3445 (2021) |
| [26] | DANNER, S. M., WILSHIN, S. D., SHEVTSOVA, N. A., and RYBAK, I. A. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. Journal of Physiology, 594(23), 6947–6967 (2016) |
| [27] | DANNER, S. M., SHEVTSOVA, N. A., FRIGON, A., and RYBAK, I. A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife, 6, e31050 (2017) |
| [28] | AUSBORN, J., SHEVTSOVA, N. A., CAGGIANO, V., DANNER, S. M., and RYBAK, I. A. Computational modeling of brainstem circuits controlling locomotor frequency and gait. eLife, 8, e43587 (2019) |
| [29] | LEMIEUX, M., JOSSET, N., ROUSSEL, M., COURAUD, S., and BRETZNER, F. Speed-dependent modulation of the locomotor behavior in adult mice reveals attractor and transitional gaits. Frontiers in Neuroscience, 10, 42 (2016) |
| [30] | ZHU, Q., WANG, F., and HAN, F. Contributions of M- and persistent sodium currents in regulating locomotor rhythms: a computational modeling study. International Journal of Bifurcation and Chaos, 33(12), 2350143 (2023) |
| [31] | ZHU, Q., HAN, F., YU, Y., WANG, F., WANG, Q., and SHAKEEL, A. A spinal circuit model with asymmetric cervical-lumbar layout controls backward locomotion and scratching in quadrupeds. Neural Networks, 178, 106422 (2024) |
| [32] | SHEVTSOVA, N. A., LI, E. Z., SINGH, S., DOUGHERTY, K. J., and RYBAK, I. A Ipsilateral and contralateral interactions in spinal locomotor circuits mediated by V1 neurons: insights from computational modeling. International Journal of Molecular Sciences, 23, 5541 (2022) |
| [33] | ZHONG, G., SHEVTSOVA, N. A., RYBAK, I. A., and HARRIS-WARRICK, R. M. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. The Journal of Physiology, 590(19), 4735–4759 (2012) |
| [34] | MACHADO, T. A., PNEVMATIKAKIS, E., PANINSKI, L., JESSELL, T. M., and MIRI, A. Primacy of flexor locomotor pattern revealed by ancestral reversion of motor neuron identity. Cell, 162(2), 338–350 (2015) |
| [35] | YANG, L., SINGLA, D., WU, A. K., CROSS, K. A., and MASMANIDIS, S. C. Dopamine lesions alter the striatal encoding of single-limb gait. eLife, 12, RP92821 (2023) |
| [36] | FAN, D., ZHENG, Y., YANG, Z., and WANG, Q. Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Applied Mathematics and Mechanics (English Edition), 41(9), 1287–1302 (2020) https://doi.org/10.1007/s10483-020-2644-8 |
| [37] | ZHU, Q., HAN, F., YUAN, Y., and SHEN, L. A TAN-dopamine interaction mechanism based computational model of basal Ganglia in action selection. Cognitive Neurodynamics, 18, 2127–2144 (2024) |
| [38] | MAO, X. and LEI, F. Stability analysis and coexisting behaviors of a delayed multiplex network under electromagnetic radiation. International Journal of Bifurcation and Chaos, 32(10), 2250148 (2022) |
| [39] | MA, J., QIN, H., SONG, X., and CHU, R. T. Pattern selection in neuronal network driven by electric autapses with diversity in time delays. International Journal of Modern Physics B, 29(1), 1450239 (2015) |
| [40] | JI, Y. and MAO, X. Fast and slow dynamical behaviors of delayed-coupled thermosensitive neurons under electromagnetic induction. Chaos Solitons & Fractals, 189, 115721 (2024) |
| [41] | LEI, Z. and MA, J. Coherence resonance and energy dynamics in a memristive map neuron. Chaos, 35(2), 023158 (2025) |
| [42] | MAO, X., LI, X., DING, W., WANG, S., ZHOU, X., and QIAO, L. Dynamics of a multiplex neural network with delayed couplings. Applied Mathematics and Mechanics (English Edition), 42(3), 441–456 (2021) https://doi.org/10.1007/s10483-021-2709-6 |
| [1] | 王海仁 谢捷敏 谢旋 胡元太 王骥. Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(2): 229-236. |
| [2] | 王方磊;安玉坤. 非线性电报方程组的3个双周期正解问题[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(1): 81-88 . |
| [3] | 雒志学;杜明银. 一类具年龄结构n维事物链模型的最优收获控制[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(5): 683-695 . |
| [4] | 鲁铁军;王美娟;刘妍. Global stability analysis of a ratio-dependent predator-prey system[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(4): 495-500 . |
| [5] | 李挺. Random attractors for asymptotically upper semicompact multivalue random semiflows[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1527-1534 . |
| [6] | 张天四;朱德明. Bifurcations of double homoclinic flip orbits with resonant eigenvalues[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1517-1526 . |
| [7] | 龙瑶;李继彬;芮伟国;何斌. Travelling wave solutions for a second order wave equation of KdV type[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1455-1465 . |
| [8] | 陈丽华;莫嘉琪. Singularly perturbed solution for weakly nonlinear equations with two parameters[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(10): 1343-1348 . |
| [9] | 冯大河;李继彬. Bifurcations of travelling wave solutions for Jaulent-Miodek equations[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(8): 999-1005 . |
| [10] | 李继彬;黎明;纳静. Kink wave determined by parabola solution of a nonlinear ordinary differential equation[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(7): 883-892 . |
| [11] | . Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(6): 799-809 . |
| [12] | 尹福其;周盛凡;殷苌茗;肖翠辉. Global attractor for Klein-Gordon-Schrödinger lattice system[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(5): 695-706 . |
| [13] | 肖海滨. Global analysis of Ivlev's type predator-prey dynamic systems[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(4): 461-470 . |
| [14] | 张韧;洪梅;孙照渤;牛生杰;朱伟军;闵锦忠;万齐林. NON-LINEAR DYNAMIC MODEL RETRIEVAL OF SUBTROPICAL HIGH BASED ON EMPIRICAL ORTHOGONAL FUNCTION AND GENETIC ALGORITHM[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(12): 1645-1653 . |
| [15] | 龙瑶;芮伟国;何斌;陈灿. BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS FOR GENERALIZED DRINFELD-SOKOLOV EQUATIONS[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(11): 1549-1555 . |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

Email Alert
RSS