Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (11): 1399-1410 .doi: https://doi.org/10.1007/s10483-008-1102-z

• Articles • 上一篇    下一篇

一类非线性偏微分方程组的解析解

张鸿庆;丁琦   

  1. 大连理工大学 应用数学系, 大连 116024
  • 收稿日期:2008-08-09 修回日期:2008-09-24 出版日期:2008-11-01 发布日期:2008-11-01
  • 通讯作者: 张鸿庆

Analytic solutions of a class of nonlinear partial differential equations

ZHANG Hong-qing;DING Qi   

  1. Department of Applied Mathematics, Dalian University of Technology,Dalian 116024, Liaoning Province, P. R. China
  • Received:2008-08-09 Revised:2008-09-24 Online:2008-11-01 Published:2008-11-01
  • Contact: ZHANG Hong-qing

摘要: 首先, 利用共轭算子的性质, 将张鸿庆等提出的求伴随算子对的方法推广到了求一类非线性 (即部分非线性的) 算子矩阵的伴随算子向量. 其次, 利用机械化的构造方法给出了求解一类非线性 (即, 部分非线性的,且以所有线性的为其特例) 非齐次微分方程组的统一理论. 即通过齐次化和三角化求得恰当的变换, 从而将原方程组化为较简单的形式, 一般为对角化的. 最后我们利用该方法求得了一些弹性力学方程组的解析解.

关键词: AC=BD 模式, 部分非线性, 伴随, 共轭, 板壳

Abstract: An approach is presented for computing the adjoint operator vector of a class of nonlinear (that is, partial-nonlinear) operator matrices by using the properties of conjugate operators to generalize a previous method proposed by the author. A unified theory is then given to solve a class of nonlinear partial-nonlinear and including all linear) and non-homogeneous differential equations with a mathematical mechanization method. In other words, a transformation is constructed by homogenization and triangulation, which reduces the original system to a simpler diagonal system. Applications are given to solve some elasticity equations.

Key words: AC=BD model, partial-nonlinear, adjoint,conjugate, plate and shell

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals