Applied Mathematics and Mechanics (English Edition) ›› 2008, Vol. 29 ›› Issue (7): 927-932 .doi: https://doi.org/10.1007/s10483-008-0711-3

• Articles • 上一篇    下一篇

广义Boussinesq方程的多辛方法

胡伟鹏1,邓子辰1,2   

  1. 1.西北工业大学 力学与土木建筑学院,西安 710072
    2.大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116023
  • 收稿日期:2008-01-16 修回日期:2008-05-09 出版日期:2008-07-03 发布日期:2008-01-01
  • 通讯作者: 邓子辰

Multi-symplectic method for generalized Boussinesq equation

HU Wei-peng1, DENG Zi-chen1,2   

  1. 1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, P. R. China;
    2. State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
  • Received:2008-01-16 Revised:2008-05-09 Online:2008-07-03 Published:2008-01-01
  • Contact: DENG Zi-chen

摘要: 广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质,基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法,构造了一种等价于多辛Box格式的新隐式多辛格式,该格式满足多辛守恒律和局部动量守恒律。对广义Boussinesq方程孤子解的数值模拟结果表明,该多辛离散格式具有较好的长时间数值稳定性。

关键词: 多辛方法, 广义Boussinesq方程, 孤子解, 守恒律

Abstract: The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme
equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.

Key words: generalized Boussinesq equation,multi-symplectic method, soliton solution, conservation law

中图分类号: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals