[1] Bardaro, C. and R. Ceppitelli, Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl., 132(1988),484-490.
[2] Bardaro, C. and R. Ceppitelli, Applications of generalized Knaster-Kuratowski-Mazukiewicz theorem to variational inequalites, J. Math. Anal. Appl., 137(1989), 46-58.
[3] Bardaro, C. and R. Ceppitelli, Fixed point theorems and vector-valued minimax theorems, J. Math. Anal. Appl., 146 (1990). 363-373.
[4] Browder, F: E., A new generalization of the Schauder fixed point theorem, Math. Ann.,174(1967).285-290.
[5] Browder, F. E., The fixed point theory of multi-valued mappings in topological vector space,Math. Ann., 177 (1968), 283-301.
[6] Chang Shih-sen and Ma Yi-hai, Generalized KKM theorem on H-space with applications, J. Math. Anal. Appl. 163 (1992), 406-421.
[7] Chang Shih-sen and Zhang Ying, cieneralized KKM theorem and variational inequalities, J. Math. Anal. App!., 159(1991). 208-223.
[8] Fan, K., A minimax inequality and applications, Inequalities Ⅲ, Ed. by O. Shisha. Academic Press, New York (1972), 103-113.
[9] Fan, K, Fixed point and related theorems for noncompact convex sets, Game Theory and Releated Topics, Eds. by O. Moeschlin and D. Pallaschke, North-Holland(1979),151-156.
[10] Fan, K., Some properties of convex of convex set related to fixed point theorems, Math.Ann.,266(1984).519-537.
[11] Ko, H. M. and K. K. Tan, A coincidence theorem with application to minimax inequalities and fixed point theorems, Tamkang J. Math., 17 (1986), 37-43.
[12] Lassonde, M., On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl., 97(1983), 151-201.
[13] Park, S., Generalizations of Ky Fan's Matching theorems and their applications, J. Math. Anal. Appl., 141(1989), 164-176.
[14] Shih, M. H. and K. K. Tan, A geometric property of convex sets with applications to minimax type inequalities and fixed point theorems, J. Austral. Math. Soc., Series A., 45(1988).169-183.
[15] Shih, M. H. and K. K. Tan, The Ky Fan minimax principle, sets with convex sections and variational inequalities, DiJrerentia! Geometry-Calculus or Variational and Their Applicnrions, Eds. by M. Rassias and T. Rassia, New York(1985), 471-481.
[16] Takahashi, W., Fixed point minimax and Hahu-Banach theorems, Proc.Suympos. Pure Math., 45. Part 2(1986). 419-427.
[17] Tan, K. K., Comparison theorems on minimax inequalities, variational inequalities and fixed point theorems, J. London Math. Soc., 23(1983), 555-562.
[18] Yen, C. L., A minimax inequality and its applications to variational inequalities, Pacific J. Math.,97(1981).477-481.
[19] Gwinner, J., On some fixed points and variational inequalities——A circular tour Nonliuenr Annl., 5. 5(1981).565-583. |