[1] Ramkumar, R. L., Kulkarni, S. V., and Pipes, R. B. Free vibration frequencies of a delaminated beam. Proceedings of 34th Annual Technical Conference, Reinforced/Composite Institute, Society of Plastics Industry, 1-5 (1979)
[2] Wang, J. T. S., Liu, Y. Y., and Gibby, J. A. Vibrations of split beams. Journal of Sound and Vibration, 84(4), 491-502 (1982)
[3] Mujumdar, P. M., and Suryanarayan, S. Flexural vibrations of beams with delaminations. Journal of Sound and Vibration, 125(3), 441-461 (1988)
[4] Zou, Y., Tong, L. P. S. G., and Steven, G. P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. Journal of Sound and Vibration, 230(2), 357-378 (2000)
[5] Hou, J. P. and Jeronimidis, G. Vibration of delaminated thin composite plates. Composites Part A: Applied Science and Manufacturing, 30(8), 989-995 (1999)
[6] Della, C. N., and Shu, D. Vibration of delaminated composite laminates: a review. Applied Mechanics Reviews, 60(1), 1-20 (2007)
[7] Shen, M. H. and Grady, J. E. Free vibrations of delaminated beams. AIAA Journal, 30(5), 1361-1370 (1992)
[8] Luo, H. and Hanagud, S. Dynamics of delaminated beams. International Journal of Solids and Structures, 37(10), 1501-1519 (2000)
[9] Hu, N., Fukunaga, H., Kameyama, M., Aramaki, Y., and Chang, F. K. Vibration analysis of delaminated composite beams and plates using a higher-order finite element. International Journal of Mechanical Sciences, 44(7), 1479-1503 (2002)
[10] Radu, A. G. and Chattopadhyay, A. Dynamic stability analysis of composite plates including delaminations using a higher order theory and transformation matrix approach. International Journal of Solids and Structures, 39(7), 1949-1965 (2002)
[11] Shu, D. and Della, C. N. Free vibration analysis of composite beams with two non-overlapping delaminations. International Journal of Mechanical Sciences, 46(4), 509-526 (2004)
[12] Della, C. N. and Shu, D. Free vibration analysis of composite beams with overlapping delaminations. European Journal of Mechanics-A/Solids, 24(3), 491-503 (2005)
[13] Ju, F., Lee, H. P., and Lee, K. H. Finite element analysis of free vibration of delaminated composite plates. Composites Engineering, 5(2), 195-209 (1995)
[14] Lee, J. Free vibration analysis of delaminated composite beams. Computers & Structures, 74, 121-129 (2000)
[15] Ramtekkar, G. S. Free vibration analysis of delaminated beams using mixed finite element model. Journal of Sound and Vibration, 328(4), 428-440 (2009)
[16] Gallego, A., Moreno-Garc a, P., and Casanova, C. F. Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis. Journal of Sound and Vibration, 332(12), 2971-2983 (2013)
[17] Alnefaie, K. Finite element modeling of composite plates with internal delamination. Composite Structures, 90, 21-27 (2009)
[18] Kargarnovin, M. H., Ahmadian, M. T., Jafari-Talookolaei, R. A., and Abedi, M. Semi-analytical solution for the free vibration analysis of generally laminated composite Timoshenko beams with single delamination. Composites Part B: Engineering, 45(1), 587-600 (2013)
[19] Marjanovi?, M., and Vuksanovi?, D. Layerwise solution of free vibrations and buckling of laminated composite and sandwich plates with embedded delaminations. Composite Structures, 108, 9-20 (2014)
[20] Bahar, L. Y. A state space approach to elasticity. Journal of the Franklin Institute, 299(1), 33-41 (1975)
[21] Chandrashekara, S. and Santhoshi, U. Natural frequencies of cross-ply laminates by state space approach. Journal of Sound and Vibration, 136(3), 413-424 (1990)
[22] Fan, J. R. and Ye, J. Q. An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers. International Journal of Solids and Structures, 26(5), 655-662 (1990)
[23] Steele, C. R. and Kim, Y. Y. Modified mixed variational principle and the state-vector equation for elastic bodies and shells of revolution. Journal of Applied Mechanics, 59(3), 587-595 (1992)
[24] Ouyang, H. J. and Zhong, W. X. Hamiltonian system and simpletic geometry in mechanics of materials (III)—flexure and free vibration of plates. Applied Mathematics and Mechanics (English Edition), 14(1), 21-25 (1993) DOI 10.1007/BF02451217
[25] Zou, G. P. and Tan, L. M. A semi-analytical solution for thermal stress analysis of laminated composite plates in the Hamiltonian system. Computers & Structures, 55(1), 113-118 (1995)
[26] Chen, W. Q. and Lee, K. Y. Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method. Composite Structures, 64, 275-283 (2004)
[27] Chen,W. Q., Cai, J. B., Ye, G. R., andWang, Y. F. Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer. International Journal of Solids and Structures, 41(18), 5247-5263 (2004)
[28] Chen, W. Q., Jung, J. P., and Lee, K. Y. Static and dynamic behavior of simply-supported crossply laminated piezoelectric cylindrical panels with imperfect bonding. Composite Structures, 74, 265-276 (2006)
[29] Qing, G. H., Qiu, J. J., and Liu, Y. H. Modified HR mixed variational principle for magnetoelectroelastic bodies and state-vector equation. Applied Mathematics and Mechanics (English Edition), 26(6), 722-728 (2005) DOI 10.1007/BF02465422
[30] Qing, G. H., Qiu, J. J., and Liu, Y. H. Free vibration analysis of stiffened laminated plates. International Journal of Solids and Structures, 43(6), 1357-1371 (2006)
[31] Qing, G. H., Qiu, J. J., and Liu, Y. H. Hamiltonian parametric element and semi-analytical solution for smart laminated plates. Applied Mathematics and Mechanics (English Edition), 28(1), 51-58 (2007) DOI 10.1007/s10483-007-0106-z
[32] Qing, G. H., Xu, J. X., and Qiu, J. J. State-vector equation with damping and vibration analysis of laminates. Applied Mathematics and Mechanics (English Edition), 28(2), 253-259 (2007) DOI 10.1007/s10483-007-0214-1
[33] Qing, G. H., Liu, Y. H., and Li, D. H. A semi-analytical model for the energy release rate analyses of composite laminates with a delamination. Finite Elements in Analysis and Design, 47(9), 1017-1024 (2011)
[34] Qing, G. H., Wang, F. X., and Liu, Y. H. State-space approach for energy release rate analysis of delaminated laminates with stiffeners. AIAA Journal, 49(10), 2123-2129 (2011)
[35] Li, D. H. and Qing, G. H. Free vibration analysis of composite laminates with delamination based on state space theory. Mechanics of Advanced Materials and Structures, 21, 402-411 (2014)
[36] Belytschko, T., Lu, Y. Y., and Gu, L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229-256 (1994)
[37] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1), 3-47 (1996)
[38] Atluri, S. N. and Zhu, T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 22(2), 117-127 (1998)
[39] Liu, G. R., Yan, L., Wang, J. G., and Gu, Y. T. Point interpolation method based on local residual formulation using radial basis functions. Structural Engineering and Mechanics, 14(6), 713-732 (2002)
[40] Liu, G. R. and Gu, Y. T. A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. Journal of Sound and Vibration, 246(1), 29-46 (2001)
[41] Liu, G. R. and Gu, Y. T. An Introduction to Meshfree Methods and Their Programming, Springer, Netherlands (2005)
[42] Xiong, Y. B. and Long, S. Y. Local Petrov-Galerkin method for a thin plate. Applied Mathematics and Mechanics (English Edition), 25(2), 210-218 (2004) DOI 10.1007/BF02437322
[43] Zeng, Q. H. and Lu, D. T. Galerkin meshless methods based on partition of unity quadrature. Applied Mathematics and Mechanics (English Edition), 26(7), 893-899 (2005) DOI 10.1007/s10483-006-0709-z
[44] Liu, G. L. and Li, X. W. Mesh free method based on local cartesian frame. Applied Mathematics and Mechanics (English Edition), 27(1), 1-6 (2006) DOI 10.1007/s10483-006-0101-1
[45] Li, D. H., Xu, J. X., and Qing, G. H. Free vibration analysis and eigenvalues sensitivity analysis for the composite laminates with interfacial imperfection. Composites Part B: Engineering, 42(6), 1588-1595 (2011)
[46] Li, D. H. and Liu, Y. Three-dimensional semi-analytical model for the static response and sensitivity analysis of the composite stiffened laminated plate with interfacial imperfections. Composite Structures, 94(6), 1943-1958 (2012) |