Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (3): 425-440.doi: https://doi.org/10.1007/s10483-024-3087-6
收稿日期:
2023-08-10
出版日期:
2024-03-03
发布日期:
2024-02-24
Kefan XU1, Muqing NIU1, Yewei ZHANG2,*(), Liqun CHEN3,4
Received:
2023-08-10
Online:
2024-03-03
Published:
2024-02-24
Contact:
Yewei ZHANG
E-mail:zhangyewei1218@126.com
Supported by:
中图分类号:
. [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 425-440.
Kefan XU, Muqing NIU, Yewei ZHANG, Liqun CHEN. An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams: theory and experiment[J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 425-440.
1 |
JIN, G. X., WANG, Z. H., and YANG, T. Z. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Applied Mathematics and Mechanics (English Edition), 43 (6), 813- 824 (2022)
doi: 10.1007/s10483-022-2852-5 |
2 | HAN, H. S., SOROKIN, V., TANG, L. H., and CAO, D. Q. A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube. Nonlinear Dynamics, 105, 1313- 1325 (2021) |
3 | GATTI, G., SHAW, A. D., GONCALVES, P. J. P., and BRENNAN, M. J. On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper. Mechanical Systems and Signal Processing, 164, 108258 (2022) |
4 | BIAN, J., and JING, X. J. A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber). Communications in Nonlinear Science and Numerical Simulation, 99, 105829 (2021) |
5 | KAMARUZAMAN, N. A., ROBERTSON, W. S. P., GHAYESH, M. H., CAZZOLATO, B. S., and ZANDER, A. C. Six degree of freedom quasi-zero stiffness magnetic spring with active control: theoretical analysis of passive versus active stability for vibration isolation. Journal of Sound and Vibration, 502, 116086 (2021) |
6 | TIAN, Y. S., CAO, D. Q., CHEN, C., and ZHANG, X. Y. Vibration isolation performance of a rectangular panel with high-static-low-dynamic stiffness supports. Applied Mathematical Modelling, 119, 218- 238 (2023) |
7 | WANG, K., ZHOU, J. X., CAI, C. Q., XU, D. L., and OUYANG, H. J. Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Applied Mathematical Modelling, 73, 581- 597 (2019) |
8 | YAO, Y. H., LI, H. G., LI, Y., and WANG, X. J. Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism. International Journal of Mechanical Sciences, 186, 105888 (2020) |
9 | LIU, X. T., HUANG, X. C., and HUA, H. X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332, 3359- 3376 (2013) |
10 | LIU, X. T., ZHAO, Q., ZHANG, Z. Y., and ZHOU, X. B. An experiment investigation on the effect of Coulomb friction on the displacement transmissibility of a quasi-zero stiffness isolator. Journal of Mechanical Science and Technology, 33, 121- 127 (2019) |
11 |
YAN, B., YU, N., and WU, C. Y. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Applied Mathematics and Mechanics (English Edition), 43 (7), 1045- 1062 (2022)
doi: 10.1007/s10483-022-2868-5 |
12 | SHUAI, C. G., LI, B. Y., and MA, J. G. A novel multi-directional vibration isolation system with high-static-low-dynamic stiffness. Acta Mechanica, 233, 5199- 5214 (2022) |
13 | HUANG, X. C., CHEN, Y., HUA, H. X., LIU, X. T., and ZHANG, Z. Y. Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. Journal of Sound and Vibration, 345, 178- 196 (2015) |
14 | FULCHER, B. A., SHAHAN, D. W., HABERMAN, M. R., SEEPERSAD, C. C., and WILSON, P. S. Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. Applied Mathematical Modelling, 136, 031009 (2014) |
15 | GATTI, G. An adjustable device to adaptively realise diverse nonlinear force-displacement characteristics. Mechanical Systems and Signal Processing, 180, 109379 (2022) |
16 | DONMEZ, A., CIGEROGLU, E., and OZGEN, G. O. An improved quasi-zero stiffness vibration isolation system utilizing dry friction damping. Nonlinear Dynamics, 101, 107- 121 (2020) |
17 | DALELA, S., BALAJI, P. S., and JENA, D. P. Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dynamics, 108, 1931- 1971 (2022) |
18 | CHURCHILL, C. B., SHAHAN, D. W., SMITH, S. P., KEEFE, A. C., and MCKNIGHT, G. P. Dynamically variable negative stiffness structures. Science Advances, 2, e1500778 (2016) |
19 | CHEN, R. Z., LI, X. P., YANG, Z. M., XU, J. C., and YANG, H. X. A variable positive-negative stiffness joint with low frequency vibration isolation performance. Measurement, 185, 110046 (2021) |
20 | CHEN, R. Z., LI, X. P., TIAN, J., YANG, Z. M., and XU, J. C. On the displacement transferability of variable stiffness multi-directional low frequency vibration isolation joint. Applied Mathematical Modelling, 112, 690- 707 (2022) |
21 | WANG, K., ZHOU, J. X., OUYANG, H. J., CHENG, L., and XU, D. L. A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. International Journal of Mechanical Sciences, 176, 105548 (2020) |
22 | ZHANG, Y. W., LI, Z., XU, K. F., and ZANG, J. A lattice sandwich structure with the active variable stiffness device under aerodynamical condition. Aerospace Science and Technology, 116, 106849 (2021) |
23 | LIU, S. G., FENG, L. F., ZHAO, D., SHI, X. X., ZHANG, Y. P., JIANG, J. X., ZHAO, Y. C., ZHANG, C. J., and CHEN, L. A real-time controllable electromagnetic vibration isolator based on magnetorheological elastomer with quasi-zero stiffness characteristic. Smart Materials and Structure, 28, 085037 (2019) |
24 | KIM, M. H., KIM, H. Y., KIM, H. C., AHN, D., and GWEON, D. G. Design and control of a 6-DOF active vibration isolation system using a halbach magnet array. IEEE-ASME Transactions on Mechatronics, 21, 2185- 2196 (2016) |
25 | JIANG, G. Q., JING, X. J., and GUO, Y. Q. A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mechanical Systems and Signal Processing, 138, 106552 (2020) |
26 | ZHAO, Y. H., and MENG, G. A bio-inspired semi-active vibration isolator with variable-stiffness dielectric elastomer: design and modeling. Journal of Sound and Vibration, 485, 115592 (2020) |
27 | PAN, H. H., JING, X. J., SUN, W. C., and GAO, H. J. A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems. IEEE Transactions on Control Systems Technology, 26, 903- 914 (2018) |
28 | XU, J., and SUN, X. T. A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. International Journal of Mechanical Sciences, 100, 126- 135 (2015) |
29 | VIRGIN, L. N., and DAVIS, R. B. Vibration isolation using buckled struts. Journal of Sound and Vibration, 260, 965- 973 (2003) |
30 | XU, K. F., ZHANG, Y. W., ZHU, Y. P., ZANG, J., and CHEN, L. Q. Dynamics analysis of active variable stiffness vibration isolator for whole-spacecraft systems based on nonlinear output frequency response functions. Acta Mechanica Solida Sinica, 33, 731- 743 (2018) |
31 | LANG, Z. Q., and BILLINGS, S. A. Output frequencies of nonlinear systems. International Journal of Control, 67, 713- 730 (1997) |
32 | BAYMA, R. S., ZHU, Y. P., and LANG, Z. Q. The analysis of nonlinear systems in the frequency domain using nonlinear output frequency response functions. Automatica, 94, 452- 457 (2018) |
33 | PENG, Z. K., LANG, Z. Q., and BILLINGS, S. A. Crack detection using nonlinear output frequency response functions. Journal of Sound and Vibration, 301, 777- 788 (2007) |
34 | PENG, Z. K., LANG, Z. Q., and BILLINGS, S. A. Resonances and resonant frequencies for a class of nonlinear systems. Journal of Sound and Vibration, 300, 993- 1014 (2007) |
35 |
ZHANG, Y. W., XU, K. F., ZANG, J., NI, Z. Y., ZHU, Y. P., and CHEN, L. Q. Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Applied Mathematics and Mechanics] (English Edition), 40 (12), 1791- 1804 (2019)
doi: 10.1007/s10483-019-2548-9 |
[1] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2113-2130. |
[2] | . [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(8): 1371-1386. |
[3] | Xingjian JING. The X-structure/mechanism approach to beneficial nonlinear design in engineering[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 979-1000. |
[4] | Kai WANG, Jiaxi ZHOU, Dongguo TAN, Zeyi LI, Qida LIN, Daolin XU. A brief review of metamaterials for opening low-frequency band gaps[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1125-1144. |
[5] | Xun WANG, Chunxia XUE, Haitao LI. Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1155-1168. |
[6] | Yimin WEI, Sha WEI, Qianlong ZHANG, Xinjian DONG, Zhike PENG, Wenming ZHANG. Targeted energy transfer of a parallel nonlinear energy sink[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(5): 621-630. |
[7] | Fengrui LIU, Han YAN, Wenming ZHANG. Nonlinear dynamic analysis of a photonic crystal nanocavity resonator[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(1): 139-152. |
[8] | Dan WANG, Yushu CHEN, M. WIERCIGROCH, Qingjie CAO. Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(9): 1251-1274. |
[9] | 原培新 李永强. Primary resonance of multiple degree-of-freedom dynamic systems with strong non-linearity using the homotopy analysis method[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(10): 1293-1304. |
[10] | 岳宝增. 微重力环境下充液球腔非线性耦合动力学研究[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(8): 1085-1092 . |
[11] | Shihua ZHOU, Dongsheng ZHANG, Bowen HOU, Zhaohui REN. Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 759-772. |
[12] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[13] | Rongzhou LIN, Lei HOU, Yi CHEN, Yuhong JIN, N. A. SAEED, Yushu CHEN. A novel adaptive harmonic balance method with an asymptotic harmonic selection[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1887-1910. |
[14] | M. ISHAQ, Hang XU. Nonlinear dynamical magnetosonic wave interactions and collisions in magnetized plasma[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1139-1156. |
[15] | Dan WANG, Zhifeng HAO, Fangqi CHEN, Yushu CHEN. Nonlinear energy harvesting with dual resonant zones based on rotating system[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(2): 275-290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||