[1] Williamson, C. H. K. and Roshko, A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2, 355-381(1988)
[2] Lai, J. C. S. and Platzer, M. F. Jet characteristics of a plunging airfoil. AIAA Journal, 37, 1529-1537(1999)
[3] Shyy, W., Berg, M., and Ljungqvist, D. Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35, 455-505(1999)
[4] Gostelow, J. P., Platzer, M. F., and Carscallen, W. E. On vortex formation in the wake flows of transonic turbine blades and oscillating airfoils. Journal of Turbomachinery, 128, 528-535(2006)
[5] Lawaczeck, O. and Heinemann, H. J. Von Karman vortex streets in the wakes of subsonic and transonic cascades. Unsteady Phenomena in Turbomachinery, AGARD-Proc. CP-177, 28-1-13(1975)
[6] Sieverding, C. H. and Heinemann, H. The influence of boundary layer state on vortex shedding from flat plates and turbine cascades. Journal of Turbomachinery, 112, 181-187(1990)
[7] Beauseroy, P. and Lengelle, R. Nonintrusive turbomachine blade vibration measurement system. Mechanical Systems and Signal Processing, 21, 1717-1738(2007)
[8] Rodriguez, C. G., Egusquiza, E., and Santos, I. F. Frequencies in the vibration induced by the rotor stator interaction in a centrifugal pump turbine. Journal of Fluids Engineering-Transactions of the ASME, 129, 1428-1435(2007)
[9] Violette, R., de Langre, E., and Szydlowsky, J. Computation of vortex-induced vibrations of long structures using a wake oscillator model:comparison with DNS and experiments. Computers & Structures, 85, 1134-1141(2007)
[10] Skaugset, K. B. and Larsen, C. M. Direct numerical simulation and experimental investigation on suppression of vortex induced vibrations of circular cylinders by radial water jets. Flow Turbulence and Combustion, 71, 35-59(2003)
[11] Guilmineau, E. and Queutey, P. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow. Journal of Fluids and Structures, 19, 449-466(2004)
[12] Rao, J. S. and Saldanha, A. Turbomachine blade damping. Journal of Sound and Vibration, 262, 731-738(2003)
[13] Dimitriadis, G., Carrington, I. B., Wright, J. R., and Copper, J. E. Blade-tip timming measurement of synchronous vibrations of rotating bladed assemblies. Mechanical Systems and Signal Processing, 16, 599-622(2002)
[14] Kumar, S., Roy, N., and Ganguli, R. Monitoring low cycle fatigue damage in turbine blade using vibration characteristics. Mechanical Systems and Signal Processing, 21, 480-501(2007)
[15] Barron, M. A. and Sen, M. Synchronization of coupled self-excited elastic beams. Journal of Sound and Vibration, 324, 209-220(2009)
[16] Barron, M. A. Vibration analysis of a self excited elastic beam. Journal of Applied Research and Technology, 8, 227-239(2010)
[17] Cao, D. Q., Gong, X. C., Wei, D., Chu, S. M., and Wang, L. G. Nonlinear vibration characteristics of a flexible blade with friction damping due to tip-rub. Shock & Vibration, 18, 105-114(2011)
[18] Chu, S. M., Cao, D. Q., Sun, S. P., Pan, J. Z., and Wang, L. G. Impact vibration characteristics of a shrouded blade with asymmetric gaps under wake flow excitations. Nonlinear Dynamics, 72, 539-554(2013)
[19] Bishop, R. E. D. and Hassan, A. Y. The lift and drag forces on a circled cylinder in a flowing fluid. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science, 277, 32-50(1964)
[20] Hemon, P. An improvement of the time delayed quasi-steady model for the oscillations of circular cylinders in cross-flow. Journal of Fluids and Structures, 13, 291-307(1999)
[21] Gabbai, R. and Benaroya, H. An overview of modelling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 282, 575-616(2005)
[22] Lee, Y., Vakakis, A., Bergman, L., and McFarland, M. Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive nonlinear energy sinks. Structural Control & Health Monitoring, 13, 41-75(2006)
[23] Hartlen, R. and Currie, I. Lift-oscillator model of vortex induced vibration. Journal of Engineering Mechanics-ASCE, 96, 577-591(1970)
[24] Skop, R. and Griffin, O. A model for the vortex-excited resonant response of bluff cylinders. Journal of Sound and Vibration, 27, 225-233(1973)
[25] Facchinetti, M. L., de Langre, E., and Biolley, F. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 19, 123-140(2004)
[26] Keber, M. and Wiercigroch, M. A Reduced Order Model for Vortex-Induced Vibration of a Vertical Offshore Riser in Lock-in, Springer, Netherlands (2008)
[27] Wang, D., Chen, Y. S., Wiercigroch, M., and Cao, Q. J. A three-degree-of-freedom model for vortex-induced vibrations of turbine blades. Meccanica (2016) DOI 10.1007/s11012-016-0381-7
[28] Wang, D., Chen, Y. S., Hao, Z. F., and Cao, Q. J. Bifurcation analysis for vibrations of a turbine blade excited by air flows. Science China Technological Sciences, 59, 1-15(2016)
[29] Williamson, C. H. K. and Govardhan, R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 96, 713-735(2008)
[30] Kadlec, R. A. and Davis, S. S. Visualization of quasiperiodic flows. AIAA Journal, 17, 1164-1169(1996)
[31] Ohashi, H. and Ishikawa, N. Visualization study of a flow near the trailing edge of an oscillating airfoil. Bulletin of JSME 15, 840-845(1972)
[32] Koochesfahani, M. M. Vortical patterns in the wake of an oscillating airfoil. AIAA Journal, 27, 1200-1205(1989)
[33] Young, J. and Lai, J. C. S. Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA Journal, 42, 2042-2052(2004)
[34] Pesheck, E., Pierre, C., and Shaw, S. W. Modal reduction of a nonlinear rotating beam through normal modes. Journal of Vibration and Acoustics, Transactions of the ASME, 124, 229-236(2002)
[35] Ozgür, T. and Gökhan, B. On nonlinear vibrations of a rotating beam. Journal of Sound and Vibration, 322, 314-335(2009)
[36] Xu, Z., Li, X., Park, J. P., and Ryu, S. J. Effecr of Coriolis acceleration on dynamic characteristics of high speed spinning steam turbine blades. Journal of Xi'an Jiaotong University, 37, 894-897(2003)
[37] Clough, R. W. and Penzien, J. Dynamics of Structures, Computer & Structures, Inc., Berkeley (2003)
[38] Skop, R. A. and Balasubramanian, S. A new twist on an old model for vortex-excited vibration. Journal of Fluids and Structures, 11, 395-412(1997)
[39] Srinil, N., Wiercigroch, M., and O'Brien, P. Reduced-order modelling of vortex-induced vibration of catenary riser. Ocean Engineering, 36, 1404-1414(2009)
[40] Xue, H., Tang, W., and Zhang, S. Simplified model for evaluation of VIV-induced fatigue damage of deepwater marine risers. Journal of Shanghai Jiaotong University, 14, 435-442(2009)
[41] Facchinetti, M. L., de Langre, E., and Biolley, F. Vortex-induced travelling waves along a cable. European Journal of Mechanics, Series B, Fluids, 23, 199-208(2004)
[42] Facchinetti, M. L., de Langre, E., and Biolley, F. Vortex shedding modelling using diffusive van der Pol oscillators. Comptes Rendus Mecanique, 330, 451-456(2002)
[43] Keber, M. Vortex-Induced Vibration of Offshore Risers:Theoretical Modelling and Analysis, Ph. D. dissertation, University of Aberdeen, Aberdeen (2012)
[44] Hao, Z. and Cao, Q. The isolation characteristics of an archetypal dynamical model with stablequasi-zero-stiffness. Journal of Sound and Vibration, 340, 61-79(2015)
[45] Hao, Z., Cao, Q., and Wiercigroch, M. Two-sided damping constraint control strategy for highperformance vibration isolation and end-stop impact protection. Nonlinear Dynamics (2016) DOI 10.1007/s11071-016-2685-5
[46] Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, Wiley-Interscience, New York, 331-338(1979)
[47] Wang, Y. and Li, F. Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. International Journal of Non-Linear Mechanics, 61, 74-79(2014)
[48] Bi, Q. S. and Chen, Y. S. Bifurcation analysis of a double pendulum with internal resonance. Applied Mathematics and Mechanics (English Edition), 21(3), 255-264(2000) DOI 10.1007/BF02459003
[49] Chen, Y. S. and Leung, A. Y. T. Bifurcation and Chaos in Engineering, Springer-Verlag, London (1998)
[50] Golubitsky, M. and Schaeffer, D. G. Singularities and Groups in Bifurcation Theory, SpringerVerlag, New York (1984)
[51] Wang, X. D., Chen, Y. S., and Hou, L. Nonlinear dynamic singularity analysis of two interconnected synchronous generator system with 1:3 internal resonance and parametric principal resonance. Applied Mathematics and Mechanics (English Edition), 36(8), 985-1004(2015) DOI 10.1007/s10483-015-1965-7
[52] Qin, Z. H., Chen, Y. S., and Li, J. Singularity analysis of a two-dimensional elastic cable with 1:1 internal resonance. Applied Mathematics and Mechanics (English Edition), 31(2), 143-150(2010) DOI 10.1007/s10483-010-0202-z
[53] Schmidt, G. and Tondl, A. Nonlinear Vibration, Cambrige University Press, Cambrige (1986)
[54] Monteil, M., Touzé, C., Thomas, O., and Benacchio, S. Nonlinear forced vibrations of thin structures with tuned eigenfrequencies:the cases of 1:2:4 and 1:2:2 internal resonances. Nonlinear Dynamics, 75, 175-200(2014) |