[1] Barigou, M., Mankad, S., Fryer, P. J. Heat transfer in two-phase solid-liquid food flows:a review. Food and Bioproducts Processing, 76, 3-29(1998)
[2] Rashidi, M. M., Hosseini, A., Pop, I., Kumar, S., and Freidoonimehr, N. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel. Applied Mathematics and Mechanics (English Edition), 35, 831-848(2014) DOI 10.1007/s10483-014-1839-9
[3] Salari, M., Mohammadtabar, M., and Mohammadtabar, A. Numerical solutions to heat transfer of nanofluid flow over stretching sheet subjected to variations of nanoparticle volume fraction and wall temperature. Applied Mathematics and Mechanics (English Edition), 35, 63-72(2014) DOI 10.1007/s10483-014-1772-8
[4] Anbuchezhian, N., Srinivasan, K., Chandrasekaran, K., and Kandasamy, R. Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal strantification due to solar energy. Applied Mathematics and Mechanics (English Edition), 33, 765-780(2012) DOI 10.1007/s10483-012-1585-8
[5] Kim, J. and Moin, P. Transport of passive scalars in a turbulent channel flow. Turbulent Shear Flows, 6, 85-96(1989)
[6] Kasagi, N., Tomita, Y., and Kuroda, A. Direct numerical simulation of passive scalar field in a turbulent channel flow. Journal of Heat Transfer, 114, 598-606(1992)
[7] Kasagi, N. and Ohtsubo, Y. Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow. Turbulent Shear Flows, 8, 97-119(1993)
[8] Kawamura, H., Abe, H., and Matsuo, Y. DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. International Journal of Heat and Fluid Flow, 20, 196-207(1999)
[9] Kawamura, H., Abe, H., and Shingai, K. DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions. Proceedings of the 3rd International Symposium on Turbulence, Heat and Mass Transfer, Aichi Shuppan Press, Japan, 15-32(2000)
[10] Na, Y., Papavassiliou, D. V., and Hanratty, T. J. Use of direct numerical simulation to study the effect of Prandtl number on temperature fields. International Journal of Heat and Fluid Flow, 20, 187-195(1999)
[11] Redjem-Saad, L., Ould-Rouiss, M., and Lauriat, G. Direct numerical simulation of turbulent heat transfer in pipe flows:effect of Prandtl number. International Journal of Heat and Fluid Flow, 28, 847-861(2007)
[12] Zonta, F., Marchioli, C., and Soldati, A. Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow. Acta Mechanica, 195, 305-326(2008)
[13] Kuerten, J. G. M., van der Geld, C. W. M., and Geurts, B. J. Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Physics of Fluids, 23, 123301-123309(2011)
[14] Jaszczur, M. Numerical analysis of a fully developed non-isothermal particle-laden turbulent channel flow. Archives of Mechanics, 63, 77-91(2011)
[15] Jaszczur, M. A numerical simulation of the passive heat transfer in a particle-laden turbulent flow. Direct and Large-Eddy Simulation VⅢ (eds. Kuerten, H., Geurts, B., Armenio, V., and Fröhlich, J.), Springer-Verlag, Berlin, 195-200(2011)
[16] Dong, Y. H. and Chen, L. F. The effect of stable stratification and thermophoresis on fine particle deposition in a bounded turbulent flow. International Journal of Heat and Mass Transfer, 54, 1168-1178(2011)
[17] Dritselis, C. D. and Vlachos, N. S. Large eddy simulation of gas-particle turbulentchannel flow with momentum exchange between the phases. International Journal of Multiphase Flow, 37, 706-721(2011)
[18] Lessani, B. and Nakhaei, M. H. Large-eddy simulation of particle-laden turbulent flow with heattransfer. International Journal of Heat and Mass Transfer, 67, 974-983(2013)
[19] Kawamura, H., Ohsaka, K., Abe, H., and Yamamoto, K. DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. International Journal of Heat and Fluid Flow, 19, 482-491(1998)
[20] Ould-Rouiss, M., Redjem-Saad, L., Lauriat, G., and Mazouz, A. Effect of Prandtl number on the turbulent thermal field in annular pipe flow. International Communications in Heat and Mass Transfer, 37, 958-963(2010)
[21] Tiselj, I., Pogrebnyak, E., Li, C., Mosyak, A., and Hetsroni, G. Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume. Physics of Fluids, 13, 1028-1039(2001) |