[1] Williamson, C. H. K. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 28, 477-539(1996)
[2] Roushan, P. and Wu, X. L. Structure-based interpretation of the Strouhal-Reynolds number relationship. Physical Review Letters, 94, 054504(2005)
[3] Williamson, C. H. K. and Govardhan, R. Vortex-induced vibrations. Annual Review of Fluid Mechanics, 36, 413-455(2004)
[4] Bishop, R. E. D. and Hassan, A. Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society of London Series A, 277, 51-75(1964)
[5] Olinger, D. J. and Sreenivasan, K. R. Nonlinear dynamics of the wake of an oscillating cylinder. Physical Review Letters, 60, 797-800(1988)
[6] Williamson, C. H. K. and Roshko, A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2, 355-381(1988)
[7] Meneghini, J. R. and Bearman, P. W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder. Journal of Fluids and Structures, 9, 435-455(1995)
[8] Lu, X. Y. and Dalton, C. Calculation of the timing of vortex formation from an oscillating cylinder. Journal of Fluids and Structures, 10, 527-541(1996)
[9] Blackburn, H. M. and Henderson, R. D. A study of two-dimensional flow past an oscillating cylinder. Journal of Fluid Mechanics, 385, 255-286(1999)
[10] Guilmineau, E. and Queutey, P. A numerical simulation of vortex shedding from an oscillating circular cylinder. Journal of Fluids and Structures, 16, 773-794(2002)
[11] Buffoni, E. Vortex shedding in subcritical conditions. Physics of Fluids, 15, 814-816(2003)
[12] Chen, S. S., Yen, R. H., and Wang, A. B. Investigation of the resonant phenomenon of flow around a vibrating cylinder in a subcritical regime. Physics of Fluids, 23, 014105(2011)
[13] Dütsch, H., Durst, F., Becker, S., and Lienhart, H. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. Journal of Fluid Mechanics, 360, 249-271(1998)
[14] Leontini, J. S., Lo Jacono, D., and Thompson, M. C. A numerical study of an inline oscillating cylinder in a free stream. Journal of Fluid Mechanics, 688, 551-568(2011)
[15] Mittal, S. and Singh, S. Vortex-induced vibrations at subcritical Re. Journal of Fluid Mechanics, 534, 185-194(2005)
[16] Succi, S. The Lattice Boltzmann Method for Fluid Dynamics and Beyond, Oxford University Press, Oxford (2001)
[17] Bhatnagar, P. L., Gross, E. P., and Krook, M. A model for collision processes in gases I:small amplitude processes in charged and neutral one-component systems. Physical Review, 94, 511-525(1954)
[18] Chen, H., Chen S., and Matthaeus, W. H. Recovery of the Navier-Stokes equation using a latticegas Boltzmann method. Physical Review A, 45, 5339-5342(1992)
[19] Qian, Y. H., d'Humières, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17, 479-484(1992)
[20] He, X. Y. and Luo, L. S. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of Statistical Physics, 88, 927-944(1997)
[21] Guo, Z., Zheng, C., and Shi, B. An extrapolation method for boundary conditions in lattice Boltzmann method. Physics of Fluids, 14, 2007-2010(2002)
[22] Lin, J., Jiang, R., Chen, Z., and Ku, X. Poiseuille flow-induced vibrations of two cylinders in tandem. Journal of Fluids and Structures, 40, 70-85(2013)
[23] Jiang, R., Lin, J., and Ku, X. Flow-induced vibrations of two tandem circular cylinders in a parallel-wall channel. Physics of Fluids, 26, 104102(2014) |